Spark Plasma Sintering of Porous Materials Made of 1Kh18N9T Corrosion-Resistant Steel Fibers

2019 ◽  
Vol 58 (1-2) ◽  
pp. 23-28
Author(s):  
V. M. Klymenko
2010 ◽  
Vol 638-642 ◽  
pp. 1890-1895 ◽  
Author(s):  
Naritoshi Aoyagi ◽  
Shigeharu Kamado ◽  
Yo Kojima

Porous aluminum alloy has been developed by powder metallurgy route using Spark plasma sintering (SPS) technique. Sintered material was produced by SPS system after getting the mixture of Al-12Si alloy and titanium hydride powders. Porous materials are prepared under various process conditions, and the pore morphology was investigated. Compression test is performed at crosshead speed of 1mm/min, 10mm/min and 100mm/min with no lubricant. The compression strength, σC i.e. plateau stress was estimated 12MPa at the density of porous materials, 0.7 Mg/m3. Densification strain εD from compression curve is around 0.6. These properties depend on pore morphology of porous materials, and it is possible to control the morphology under specific condition with this process. Plateau stress and absorbed energy of heat treated porous Al-Si alloy were estimated by measurement of a first peak stress and calculated an area up to 0.5 strain from compressive stress-starin curves. Young’s modulus is measured by starin gauge method under compression test. Porous aluminum alloy filled mold die is also produced successfully.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 541 ◽  
Author(s):  
Dina Dudina ◽  
Boris Bokhonov ◽  
Eugene Olevsky

Spark plasma sintering (SPS), a sintering method that uses the action of pulsed direct current and pressure, has received a lot of attention due to its capability of exerting control over the microstructure of the sintered material and flexibility in terms of the heating rate and heating mode. Historically, SPS was developed in search of ways to preserve a fine-grained structure of the sintered material while eliminating porosity and reaching a high relative density. These goals have, therefore, been pursued in the majority of studies on the behavior of materials during SPS. Recently, the potential of SPS for the fabrication of porous materials has been recognized. This article is the first review to focus on the achievements in this area. The major approaches to the formation of porous materials by SPS are described: partial densification of powders (under low pressures, in pressureless sintering processes or at low temperatures), sintering of hollow particles/spheres, sintering of porous particles, and sintering with removable space holders or pore formers. In the case of conductive materials processed by SPS using the first approach, the formation of inter-particle contacts may be associated with local melting and non-conventional mechanisms of mass transfer. Studies of the morphology and microstructure of the inter-particle contacts as well as modeling of the processes occurring at the inter-particle contacts help gain insights into the physics of the initial stage of SPS. For pre-consolidated specimens, an SPS device can be used as a furnace to heat the materials at a high rate, which can also be beneficial for controlling the formation of porous structures. In sintering with space holders, SPS processing allows controlling the structure of the pore walls. In this article, using the literature data and our own research results, we have discussed the formation and structure of porous metals, intermetallics, ceramics, and carbon materials obtained by SPS.


2019 ◽  
Vol 45 (1) ◽  
pp. 22-65 ◽  
Author(s):  
Abolfazl Azarniya ◽  
Amir Azarniya ◽  
Mir Saman Safavi ◽  
Mohammad Farshbaf Ahmadipour ◽  
Melica Esmaeeli Seraji ◽  
...  

2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document