scholarly journals Metrisable assessment of the course of stream-systemic processes in vector form in industry 4.0

Author(s):  
Radosław Drozd ◽  
Radosław Wolniak

AbstractThe goal of this paper is to present an innovative conception how to use metrisable vector structure of a manufacturing process, based on quantitative relations between the activity of input streams, features of the product, and effect of losses; all of which are excellent practical solution for Industry 4.0, and in turn intelligent factories. This solution can be a usefull way in the process of building sustainable organization. A vector representation of manufacturing processes was formulated, one which is based in system engineering. Three manufacturing system state vectors were proposed. These are: input stream vector $${\upphi }$$ ϕ , product features vector $$\overrightarrow {{\text{ P}}}$$ P → which is also referred to as quality vector, and losses vector $$\overrightarrow {{\text{ S}}}$$ S → . Scalar, vector, and mixed products of these vectors may form constitutive equations of manufacturing processes. The relations between the vectors $$\upphi$$ ϕ , $$\overrightarrow {{\text{ P}}}$$ P → ,$$\overrightarrow {{\text{ S}}}$$ S → provide a possibility for a metrisable, complex analysis and assessment of a contemporary manufacturing process. The paper shows practical methods for defining the size of the vector values within the process. The demonstrated vector description of stream-systemic processes can also be applied to non-material manufacturing.

2010 ◽  
Vol 20-23 ◽  
pp. 28-33
Author(s):  
Da Wei Liu ◽  
Hong Bin Liu

Traditionally, Models of IT manufacturing process planning and scheduling were carried out in a sequential way, where scheduling was done after process plans had been delivered. Since the two functions are usually complementary, it is necessary to integrate them correctly so that performance of an IT manufacturing system can be improved efficiently. In the thesis, a new integration model focused on key factors has been developed to facilitate the integration and optimization. The practice of the models show that the proposed approaches are promising and very effective methods for the integration of process planning and scheduling in IT manufacturing processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Mohammed M. Mabkhot ◽  
Ali M. Al-Samhan ◽  
Lotfi Hidri

In nowadays industry 4.0 and changeable manufacturing context, designers and manufacturing engineers struggle to determine appropriate quick, accurate (with flawless quality), and cost-effective processes to design highly customized products to meet customer requirements. To determine manufacturing processes, the matching between product features, material characteristics, and process capabilities needs to be optimized. Finding such an optimized matching is usually referred to as manufacturing process selection (MPS), which is not an easy task because of the infinite combinations of product features, numerous material characteristics, and various manufacturing processes. Although problems associated with MPS have received considerable attention, semantic web technologies are still underexplored and their potential is still uncovered. Almost no previous study has considered combining case-based reasoning (CBR) with ontologies, a famous and powerful semantic web enabler, to achieve MPS. In this study, we developed a decision support system (DSS) for MPS based on ontology-enabled CBR. By applying automatic reasoning and similarity retrieving on an industrial case study, we show that ontologies enable process selection by determining competitive matching between product features, material characteristics, and process capabilities and by endorsing effective case retrieval.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 580
Author(s):  
Francisco J. G. Silva

Though new manufacturing processes that revolutionize the landscape regarding the rapid manufacture of parts have recently emerged, the machining process remains alive and up-to-date in this context, always presenting itself as a manufacturing process with several variants and allowing for high dimensional accuracy and high levels of surface finish [...]


2010 ◽  
Vol 37-38 ◽  
pp. 1292-1295
Author(s):  
Yan Chao ◽  
Hai Feng Zhang ◽  
Li Qun Wu

Tolerance information plays a critical role in many steps of the product life cycle. It is especially important due to the advances in Internet technologies and increasing integration requirements from industry. In this paper, geometric tolerances information in manufacturing process (IMP) is studied, and the layered conformance level of geometric tolerances is established according to ASME Y14.5-1994, STEP and DMIS. An EXPRESS-G data model of geometric tolerance information in IMP is established. The XML language is used to represent and program the geometric tolerances information in IMP.


2012 ◽  
Vol 457-458 ◽  
pp. 921-926
Author(s):  
Jin Zhi Zhao ◽  
Yuan Tao Liu ◽  
Hui Ying Zhao

A framework for building EDM collaborative manufacturing system using multi-agent technology to support organizations characterized by physically distributed, enterprise-wide, heterogeneous intelligent manufacturing system over Internet is proposed. According to the characteristics of agile EDM collaborative manufacturing system(AEDMCMS), the agent technology is combined with Petri net in order to analyze the model. Based on the basic Petri Net, the definition is extended and the Agent-oriented Petri net (APN) is proposed. AEDMCM is turned into the model of Petri Net which is suitable to the analysis and optimization of manufacturing processes.


Author(s):  
Anand Balu Nellippallil ◽  
Vignesh Rangaraj ◽  
B. P. Gautham ◽  
Amarendra Kumar Singh ◽  
Janet K. Allen ◽  
...  

Reducing the manufacturing and marketing time of products by means of integrated simulation-based design and development of the material, product, and the associated manufacturing processes is the need of the hour for industry. This requires the design of materials to targeted performance goals through bottom-up and top-down modeling and simulation practices that enables handshakes between modelers and designers along the entire product realization process. Manufacturing a product involves a host of unit operations and the final properties of the manufactured product depends on the processing steps carried out at each of these unit operations. In order to effectively couple the material processing-structure-property-performance spaces, there needs to be an interplay of the systems-based design of materials with enhancement of models of various unit operations through multiscale modeling methodologies and integration of these models at different length scales (vertical integration). This ensures the flow of information from one unit operation to another thereby establishing the integration of manufacturing processes (horizontal integration). Together these types of integration will support the decision-based design of the manufacturing process chain so as to realize the end product. In this paper, we present a goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models for the hot rolling and cooling stages of the steel manufacturing process chain for the production of a rod with defined properties. The primary mathematical construct used for the method presented is the compromise Decision Support Problem (cDSP) supported by the proposed Concept Exploration Framework (CEF) to generate satisficing solutions under uncertainty. The efficacy of the method is illustrated by exploring the design space for the microstructure after cooling that satisfies the requirements identified by the end mechanical properties of the product. The design decisions made are then communicated in an inverse manner to carry out the design exploration of the cooling stage to identify the design set points for cooling that satisfies the new target microstructure requirements identified. Specific requirements such as managing the banded microstructure to minimize distortion in forged gear blanks are considered in the problem. The proposed method is generic and we plan to extend the work by carrying out the integrated decision-based design exploration of rolling and reheating stages that precede to realize the end product.


2019 ◽  
Vol 109 (03) ◽  
pp. 179-183
Author(s):  
J. Fischer ◽  
P. Springer ◽  
S. Fulga-Beising ◽  
K. Abu El-Qomsan

Das Fraunhofer IPA forscht an Workflows und Methoden für die Herstellung personalisierter Produkte von der Erfassung persönlicher Daten über die Analyse und Modellierung bis hin zur flexiblen, automatisierten Fertigung der Produkte. Der Beitrag beschreibt einen beispielhaften Anwendungsfall: die Herstellung einer personalisierten Brille. Für die nötige Flexibilität in der Fertigung wurde ein vollständig automatisiertes additives Fertigungssystem entwickelt, das im Applikationszentrum Industrie 4.0 des Fraunhofer IPA und des Instituts für Industrielle Fertigung und Fabrikbetrieb IFF der Universität Stuttgart integriert ist.   Fraunhofer IPA examines workflows and methods for the production of personalized products from the acquisition of personal data, analysis and modelling to the flexible, automated production of the products. This paper exemplifies an application using the production of personalized glasses. For this purpose, a fully automated additive manufacturing system was developed to provide the necessary flexibility in manufacturing.


Author(s):  
Kosuke Ishii ◽  
Cheryl Juengel ◽  
C. Fritz Eubanks

Abstract This study develops a method to capture the broadest customer preference in a product line while minimizing the life-cycle cost of providing variety. The paper begins with an overview of product variety and its importance in overhead costs: supply chain, equipment and tooling, service, and recycling. After defining the product structure graph as a representation of variety, the paper introduces an approximate measure for the customer importance and life-cycle cost of product variety The cost measure utilizes the concept of late point identification which urges standardization early in the manufacturing process and differentiation at the end of the process. The variety importance-cost map allows engineers to identify cost drivers in the design of the product or the manufacturing system and seek improvements. The refrigerator door example illustrates the concept. On-going work seeks to validate and enhance the method with several companies from different industries.


Sign in / Sign up

Export Citation Format

Share Document