Characterization of the Electrical Conductivity of Concentrated Suspensions of Silica in Aqueous Solutions of Sulfuric Acid

2005 ◽  
Vol 78 (7) ◽  
pp. 1084-1087
Author(s):  
E. P. Grishina ◽  
A. M. Udalova
1984 ◽  
Vol 49 (5) ◽  
pp. 1109-1115
Author(s):  
Jindřich Novák ◽  
Zdeněk Kodejš ◽  
Ivo Sláma

The density, viscosity, and electrical conductivity of highly concentrated solutions of ammonium nitrate in dimethyl sulphoxide have been determined over the temperature range 10-60 °C and the concentration range 7-50 mol% of the salt. The variations in the quantities as a function of temperature and concentration have been correlated by empirical equations. A comparison is made between the transport properties for the present system, aqueous solutions of ammonium nitrate, and calcium nitrate solutions in dimethyl sulphoxide.


1990 ◽  
Vol 55 (12) ◽  
pp. 2933-2939 ◽  
Author(s):  
Hans-Hartmut Schwarz ◽  
Vlastimil Kůdela ◽  
Klaus Richau

Ultrafiltration cellulose acetate membrane can be transformed by annealing into reverse osmosis membranes (RO type). Annealing brings about changes in structural properties of the membranes, accompanied by changes in their permeability behaviour and electrical properties. Correlations between structure parameters and electrochemical properties are shown for the temperature range 20-90 °C. Relations have been derived which explain the role played by the dc electrical conductivity in the characterization of rejection ability of the membranes in the reverse osmosis, i.e. rRO = (1 + exp (A-B))-1, where exp A and exp B are statistically significant correlation functions of electrical conductivity and salt permeation, or of electrical conductivity and water flux through the membrane, respectively.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 217
Author(s):  
Marin Ugrina ◽  
Martin Gaberšek ◽  
Aleksandra Daković ◽  
Ivona Nuić

Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.


Sign in / Sign up

Export Citation Format

Share Document