Seismology of Oscillating Flux Tube with Twisted Magnetic Field and Plasma Flow

Solar Physics ◽  
2017 ◽  
Vol 292 (8) ◽  
Author(s):  
Karam Bahari
Keyword(s):  
2014 ◽  
Vol 880 ◽  
pp. 128-133 ◽  
Author(s):  
Vyacheslav F. Myshkin ◽  
Dmitry A. Izhoykin ◽  
Ivan A. Ushakov ◽  
Viktor F. Shvetsov

It is known that chemical bonding is only possible when particles with antiparallel valence electrons spins orientation collide [1, 2]. In an external magnetic field unpaired electrons spins precession around the field lines is observed. Precession frequencies of valence electrons of magnetic and nonmagnetic nuclei differ, resulting in a different probability to collide in reactive state for different isotopes. The investigations results of magnetic field influence on the carbon isotopes redistribution between carbon dioxide and disperse carbon in plasmachemical processes are given. Argon-oxygen plasma by a high-frequency generator was produced. Carbon placed into reaction zone by the high-frequency electrode evaporation. The plasmachemical reaction products quenching in the plasma flow at the sampler probe were examined. It is found that the Laval nozzle sampler is more efficient for plasma stream cooling versus the cylindrical sampler. The effects of flow rate, pressure and carbon dioxide concentration on the plasma flow cooling efficiency were estimated.


2017 ◽  
Vol 61 (9) ◽  
pp. 775-782 ◽  
Author(s):  
K. N. Mitrofanov ◽  
S. S. Anan’ev ◽  
D. A. Voitenko ◽  
V. I. Krauz ◽  
G. I. Astapenko ◽  
...  

2004 ◽  
Vol 22 (1) ◽  
pp. 213-236 ◽  
Author(s):  
O. L. Vaisberg ◽  
L. A. Avanov ◽  
T. E. Moore ◽  
V. N. Smirnov

Abstract. We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c) distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a) type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b) and (c) ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions)


2019 ◽  
Vol 15 (S354) ◽  
pp. 268-279
Author(s):  
Dmitry V. Bisikalo ◽  
Andrey G. Zhilkin

AbstractHot Jupiters have extended gaseous (ionospheric) envelopes, which extend far beyond the Roche lobe. The envelopes are loosely bound to the planet and, therefore, are strongly influenced by fluctuations of the stellar wind. We show that, since hot Jupiters are close to the parent stars, magnetic field of the stellar wind is an important factor defining the structure of their magnetospheres. For a typical hot Jupiter, velocity of the stellar wind plasma flow around the atmosphere is close to the Alfvén velocity. As a result stellar wind fluctuations, such as coronal mass ejections, can affect the conditions for the formation of a bow shock around a hot Jupiter. This effect can affect observational manifestations of hot Jupiters.


1980 ◽  
Vol 91 ◽  
pp. 487-489 ◽  
Author(s):  
B. V. Somov ◽  
S. I. Syrovatskii

Solution of the nonlinear MHD problem of plasma flow in an increasing dipolar magnetic field is obtained in the approximation of a strong field. The distributions of plasma velocity, displacement, and density are calculated. The situation when the magnetic dipole is ‘increased’ by rapid process of magnetic reconnection or current sheet rupture is illustrated. Possible applications are discussed in connection with plasma ejections from chromosphere in corona.


1983 ◽  
Vol 102 ◽  
pp. 67-71
Author(s):  
W. Deinzer ◽  
G. Hensler ◽  
D. Schmitt ◽  
M. Schüssler ◽  
E. Weisshaar

We give a short summary of some results of a numerical study of magnetic field concentrations in the solar photosphere and upper convection zone. We have developed a 2D time dependent code for the full MHD equations (momentum equation, equation of continuity, induction equation for infinite conductivity and energy equation) in slab geometry for a compressible medium. A Finite-Element-technique is used. Convective energy transport is described by the mixing-length formalism while the diffusion approximation is employed for radiation. We parametrize the inhibition of convective heat flow by the magnetic field and calculate the material functions (opacity, adiabatic temperature gradient, specific heat) self-consistently. Here we present a nearly static flux tube model with a magnetic flux of ∼ 1018 mx, a depth of 1000 km and a photospheric diameter of ∼ 300 km as the result of a dynamical calculation. The influx of heat within the flux tube at the bottom of the layer is reduced to 0.2 of the normal value. The mass distribution is a linear function of the flux function A: dm(A)/dA = const. Fig. 1 shows the model: Isodensities (a), fieldlines (b), isotherms (c) and lines of constant continuum optical depth (d) are given. The “Wilson depression” (height difference between τ = 1 within and outside the tube) is ∼ 150 km and the maximum horizontal temperature deficit is ∼ 3000 K. Field strengths as function of x for three different depths and as function of depth along the symmetry axis are shown in (e) and (f), respectively. Note the sharp edge of the tube.


Sign in / Sign up

Export Citation Format

Share Document