Influence of the magnetic field of stellar wind on hot jupiter’s envelopes

2019 ◽  
Vol 15 (S354) ◽  
pp. 268-279
Author(s):  
Dmitry V. Bisikalo ◽  
Andrey G. Zhilkin

AbstractHot Jupiters have extended gaseous (ionospheric) envelopes, which extend far beyond the Roche lobe. The envelopes are loosely bound to the planet and, therefore, are strongly influenced by fluctuations of the stellar wind. We show that, since hot Jupiters are close to the parent stars, magnetic field of the stellar wind is an important factor defining the structure of their magnetospheres. For a typical hot Jupiter, velocity of the stellar wind plasma flow around the atmosphere is close to the Alfvén velocity. As a result stellar wind fluctuations, such as coronal mass ejections, can affect the conditions for the formation of a bow shock around a hot Jupiter. This effect can affect observational manifestations of hot Jupiters.

Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 422
Author(s):  
Andrey Zhilkin ◽  
Dmitri Bisikalo

A numerical model description of a hot Jupiter extended envelope based on the approximation of multi-component magnetic hydrodynamics is presented. The main attention is focused on the problem of implementing the completed MHD stellar wind model. As a result, the numerical model becomes applicable for calculating the structure of the extended envelope of hot Jupiters not only in the super-Alfvén and sub-Alfvén regimes of the stellar wind flow around and in the trans-Alfvén regime. The multi-component MHD approximation allows the consideration of changes in the chemical composition of hydrogen–helium envelopes of hot Jupiters. The results of calculations show that, in the case of a super-Alfvén flow regime, all the previously discovered types of extended gas-dynamic envelopes are realized in the new numerical model. With an increase in magnitude of the wind magnetic field, the extended envelope tends to become more closed. Under the influence of a strong magnetic field of the stellar wind, the envelope matter does not move along the ballistic trajectory but along the magnetic field lines of the wind toward the host star. This corresponds to an additional (sub-Alfvénic) envelope type of hot Jupiters, which has specific observational features. In the transient (trans-Alfvén) mode, a bow shock wave has a fragmentary nature. In the fully sub-Alfvén regime, the bow shock wave is not formed, and the flow structure is shock-less.


2021 ◽  
Author(s):  
Ildar Shaikhislamov ◽  
Maxim Khodachenko ◽  
Ilya Miroshnichenko ◽  
Marina Rumenskikh ◽  
Artem Berezutsky

<p>Using the global 3D multi-fluid HD and its extension to MHD we simulated the measured HD209458b transit absorption depths at the FUV lines, and at the NIR line (10830 Å) of metastable helium HeI(2<sup>3</sup>S) triplet, paying attention to possible change of the absorption profiles due to the presence of planetary intrinsic magnetic field. As continuation of our previous studies of HD209458b (<em>Shaikhislamov et al. 2018, 2020</em>), the inclusion of the HeI(2<sup>3</sup>S) line into consideration and the comparison with corresponding measurements allows to constrain the helium abundance by He/H ~ 0.02, and stellar XUV flux at 1 a.u. by <em>F</em><sub>XUV </sub>~10 erg cm<sup>2</sup> s<sup>-1</sup> at 1 a.u. For the first time, we studied the influence of the planetary dipole magnetic field with a model which self-consistently describes the generation of the escaping upper atmospheric flow of a magnetized hot Jupiter, formation of magnetosphere and its interaction with the stellar wind. We simulated the absorption in the most of spectral lines for which measurements have been made. MHD simulations have shown that the planetary magnetic dipole moment µ<sub>P</sub> = 0.61 of the Jovian value, which produces the magnetic field equatorial surface value of 1 G, profoundly changes the character of the escaping planetary upper atmosphere. The total mass loss rate in this case is reduced by 2 times, as compared to the non-magnetized planet. In particular, we see the formation of the dead- and the wind- zones around the planet with the different character of plasma motion there. The 3D MHD modelling also confirmed the previous 2D MHD simulations result of <em>Khodachenko et al (2015) </em>that the escaping PW forms a thin magnetodisk in the equatorial region around the planet. The significantly reduced velocity of PW at the low altitudes around the planet, and especially at the night side, results in the stronger photo-ionization of species and significantly lower densities of the corresponding absorbing elements. Altogether, the reduced velocities and lower densities result in significant decrease of the absorption at Lyα (HI), OI, and CII lines, though the absorption at HeI(2<sup>3</sup>S) line remains nearly the same.</p> <p>As it was shown in our previous papers, the dense and fast stellar wind, interacting with the escaping upper atmosphere of HD209458b, generates sufficient amount of Energetic Neutral Atoms (ENAs) to produce significant absorption in the high-velocity blue wing of the Lyα line. However, according to the performed 3D MHD modelling reported here, the planetary magnetic dipole field with the equatorial surface value of B<sub>p</sub>=1 G prevents the formation of ENAs, especially in the trailing tail. This effect opens a possibility to constrain the range of planetary magnetic field values for the evaporating hot Jupiters and warm Neptunes in the stellar-planetary systems where sufficiently strong SW is expected.</p> <p>The presented results fitted to the available measurements indicate that the magnetic field of HD209458b should be at least an order of magnitude less than that of the Jupiter. This conclusion agrees with the previous estimates, based on more simplified models (e.g., <em>Kislyakova et al. 2014</em>) and much less observational data, when only Lyα absorption was considered. We believe that the application of 3D MHD models simulating the escape of upper atmospheres of hot exoplanets and the related transits at the available for measurement spectral lines, sensitive to the dynamics of planetary plasma affected by the MF, opens a way for probing and quantifying of exoplanetary magnetic fields and sheds more light on their nature.</p> <p>This work was supported by grant № 18-12-00080 of the Russian Science Foundation and grant № 075-15-2020-780 of the Russian Ministry of Education and Science.</p> <p> </p> <p>Khodachenko, M.L., Shaikhislamov, I.F., Lammer, H., et al., 2015, ApJ, 813, 50.</p> <p>Shaikhislamov, I. F., Khodachenko, M. L., Lammer, H., et al., 2018, ApJ, 866(1), 47.</p> <p>Shaikhislamov, I. F., Khodachenko, M. L., Lammer, et al., 2020, MNRAS, 491(3), 3435-3447</p>


2015 ◽  
Vol 11 (S320) ◽  
pp. 376-381 ◽  
Author(s):  
P. Wilson Cauley ◽  
Seth Redfield ◽  
Adam G. Jensen ◽  
Travis Barman ◽  
Michael Endl ◽  
...  

AbstractHot Jupiters, i.e., Jupiter-mass planets with orbital semi major axes of <10 stellar radii, can interact strongly with their host stars. If the planet is moving supersonically through the stellar wind, a bow shock will form ahead of the planet where the planetary magnetosphere slams into the the stellar wind or where the planetary outflow and stellar wind meet. Here we present high resolution spectra of the hydrogen Balmer lines for a single transit of the hot Jupiter HD 189733 b. Transmission spectra of the Balmer lines show strong absorption ~70 minutes before the predicted optical transit, implying a significant column density of excited hydrogen orbiting ahead of the planet. We show that a simple geometric bow shock model is able to reproduce the important features of the absorption time series while simultaneously matching the line profile morphology. Our model suggests a large planetary magnetic field strength of ~28 G. Follow-up observations are needed to confirm the pre-transit signal and investigate any variability in the measurement.


2020 ◽  
Author(s):  
Herbert Gunell ◽  
Maria Hamrin ◽  
Oleksandr Goncharov ◽  
Alexandre De Spiegeleer ◽  
Stephen Fuselier ◽  
...  

&lt;p&gt;Can reconnection be triggered as a directional discontinuity (DD) crosses the bow shock? Here we present some unique observations of asymmetric reconnection at a quasi-perpendicular bow shock as an interplanetary DD is crossing it simultaneously with the Magnetospheric Multiscale (MMS) mission. The data show indications of ongoing reconnection at the bow shock southward of the spacecraft. The DD is also observed by several upstream spacecraft (ACE, WIND, Geotail, and THEMIS B) and one downstream in the magnetosheath (Cluster 4), but none of them resolve signatures of ongoing reconnection. We therefore suggest that reconnection was temporarily triggered as the DD was compressed by the shock. Bow shock reconnection is inevitably asymmetric with both the density and the magnetic field strength being higher on one side of the X-line (the magneosheath side) than on the other side where the plasma flow also is supersonic (the solar wind side). Asymmetric reconnection of the bow shock type has never been studied before, and the data discussed here are hence unique.&lt;/p&gt;


2020 ◽  
Vol 633 ◽  
pp. A48 ◽  
Author(s):  
C. P. Folsom ◽  
D. Ó Fionnagáin ◽  
L. Fossati ◽  
A. A. Vidotto ◽  
C. Moutou ◽  
...  

Context. 55 Cancri hosts five known exoplanets, most notably the hot super-Earth 55 Cnc e, which is one of the hottest known transiting super-Earths. Aims. Because of the short orbital separation and host star brightness, 55 Cnc e provides one of the best opportunities for studying star-planet interactions (SPIs). We aim to understand possible SPIs in this system, which requires a detailed understanding of the stellar magnetic field and wind impinging on the planet. Methods. Using spectropolarimetric observations and Zeeman Doppler Imaging, we derived a map of the large-scale stellar magnetic field. We then simulated the stellar wind starting from the magnetic field map, using a 3D magneto-hydrodynamic model. Results. The map of the large-scale stellar magnetic field we derive has an average strength of 3.4 G. The field has a mostly dipolar geometry; the dipole is tilted by 90° with respect to the rotation axis and the dipolar strength is 5.8 G at the magnetic pole. The wind simulations based on this magnetic geometry lead us to conclude that 55 Cnc e orbits inside the Alfvén surface of the stellar wind, implying that effects from the planet on the wind can propagate back to the stellar surface and result in SPI.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


2017 ◽  
Vol 61 (9) ◽  
pp. 775-782 ◽  
Author(s):  
K. N. Mitrofanov ◽  
S. S. Anan’ev ◽  
D. A. Voitenko ◽  
V. I. Krauz ◽  
G. I. Astapenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document