scholarly journals Volatiles and Refractories in Surface-Bounded Exospheres in the Inner Solar System

2021 ◽  
Vol 217 (5) ◽  
Author(s):  
Cesare Grava ◽  
Rosemary M. Killen ◽  
Mehdi Benna ◽  
Alexey A. Berezhnoy ◽  
Jasper S. Halekas ◽  
...  

AbstractVolatiles and refractories represent the two end-members in the volatility range of species in any surface-bounded exosphere. Volatiles include elements that do not interact strongly with the surface, such as neon (detected on the Moon) and helium (detected both on the Moon and at Mercury), but also argon, a noble gas (detected on the Moon) that surprisingly adsorbs at the cold lunar nighttime surface. Refractories include species such as calcium, magnesium, iron, and aluminum, all of which have very strong bonds with the lunar surface and thus need energetic processes to be ejected into the exosphere. Here we focus on the properties of species that have been detected in the exospheres of inner Solar System bodies, specifically the Moon and Mercury, and how they provide important information to understand source and loss processes of these exospheres, as well as their dependence on variations in external drivers.

2020 ◽  
Vol 643 ◽  
pp. A146
Author(s):  
J. I. González Hernández ◽  
R. Rebolo ◽  
L. Pasquini ◽  
G. Lo Curto ◽  
P. Molaro ◽  
...  

Context. The general theory of relativity predicts the redshift of spectral lines in the solar photosphere as a consequence of the gravitational potential of the Sun. This effect can be measured from a solar disk-integrated flux spectrum of the Sun’s reflected light on Solar System bodies. Aims. The laser frequency comb (LFC) calibration system attached to the HARPS spectrograph offers the possibility of performing an accurate measurement of the solar gravitational redshift (GRS) by observing the Moon or other Solar System bodies. Here, we analyse the line shift observed in Fe absorption lines from five high-quality HARPS-LFC spectra of the Moon. Methods. We selected an initial sample of 326 photospheric Fe lines in the spectral range between 476–585 nm and measured their line positions and equivalent widths (EWs). Accurate line shifts were derived from the wavelength position of the core of the lines compared with the laboratory wavelengths of Fe lines. We also used a CO5BOLD 3D hydrodynamical model atmosphere of the Sun to compute 3D synthetic line profiles of a subsample of about 200 spectral Fe lines centred at their laboratory wavelengths. We fit the observed relatively weak spectral Fe lines (with EW< 180 mÅ) with the 3D synthetic profiles. Results. Convective motions in the solar photosphere do not affect the line cores of Fe lines stronger than about ∼150 mÅ. In our sample, only 15 Fe I lines have EWs in the range 150< EW(mÅ) < 550, providing a measurement of the solar GRS at 639 ± 14 m s−1, which is consistent with the expected theoretical value on Earth of ∼633.1 m s−1. A final sample of about 97 weak Fe lines with EW < 180 mÅ allows us to derive a mean global line shift of 638 ± 6 m s−1, which is in agreement with the theoretical solar GRS. Conclusions. These are the most accurate measurements of the solar GRS obtained thus far. Ultrastable spectrographs calibrated with the LFC over a larger spectral range, such as HARPS or ESPRESSO, together with a further improvement on the laboratory wavelengths, could provide a more robust measurement of the solar GRS and further testing of 3D hydrodynamical models.


1997 ◽  
Vol 23 (1) ◽  
pp. 263-274

At the 1988 Baltimore General Assembly of the International Astronomical Union, members of several Commissions dealing with planetary science expressed deep concern that no work was being undertaken to identify and avoid pollution problems in interplanetary space beyond the Moon. At that time NASA had convened a conference on problems in cislunar space due to the large and growing numbers of orbiting fragments hazardous to space vehicles. In translunar space this is hardly a problem. However an alarming number of future interplanetary mission proposals were considered for other reasons to be potentially harmful to various solar system bodies and interplanetary space itself.


Author(s):  
Ian A. Crawford ◽  
Katherine H. Joy ◽  
Jan H. Pasckert ◽  
Harald Hiesinger

The lunar surface has been exposed to the space environment for billions of years and during this time has accumulated records of a wide range of astrophysical phenomena. These include solar wind particles and the cosmogenic products of solar particle events which preserve a record of the past evolution of the Sun, and cosmogenic nuclides produced by high-energy galactic cosmic rays which potentially record the galactic environment of the Solar System through time. The lunar surface may also have accreted material from the local interstellar medium, including supernova ejecta and material from interstellar clouds encountered by the Solar System in the past. Owing to the Moon's relatively low level of geological activity, absence of an atmosphere, and, for much of its history, lack of a magnetic field, the lunar surface is ideally suited to collect these astronomical records. Moreover, the Moon exhibits geological processes able to bury and thus both preserve and ‘time-stamp' these records, although gaining access to them is likely to require a significant scientific infrastructure on the lunar surface. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.


1992 ◽  
Vol 9 ◽  
pp. 508-536
Author(s):  
B. Kolaczek

Solar System bodies are different. They have different sizes, from large planets to small asteroids, and shapes. They have different structure, from solid body to solid body with fluid atmosphere or core, to gaseous bodies, but all of them rotate. The Solar System is a big laboratory for studying rotation of solid and fluid bodies.Different observational methods are applied to determine the rotation of the Solar system bodies. They depend on the position of the observer and on the structure of the bodies. The most accurate methods, laser ranging to the Moon and artificial satellites and Very Long Base radio Interferometry have been applied to the determination of the rotation of the Earth and the Moon. Their accuracy is better than 0.001”, which on the surface of the Earth corresponds to about 3 cm. Radiotracking of artifical satellites have been used for Earth, Moon, Venus, Mars. In the case of Jupiter, Saturn, Uranus, Neptune and Pluto-Charon magnetic and photometric observations have been used respectively. Their accuracy is of the order of one tenth of a degree.


Elements ◽  
2020 ◽  
Vol 16 (5) ◽  
pp. 331-336
Author(s):  
Marissa M. Tremblay ◽  
William S. Cassata

Rocks from extraterrestrial bodies in the Solar System are influenced by thermal processes occurring within planetary interiors and on their surfaces. These range from the extremely hot and brief, in the case of impact events, to the comparatively cool and protracted, in the case of solar irradiation of rocks residing in regoliths for millions to billions of years. Noble gas thermochronology applied to meteorites and extraterrestrial materials returned by space missions enables us to decipher the histories of these materials and thereby understand fundamental aspects of the evolution of terrestrial planetary bodies, including the Moon, Mars, and asteroids.


2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Diego Janches ◽  
Alexey A. Berezhnoy ◽  
Apostolos A. Christou ◽  
Gabriele Cremonese ◽  
Takayuki Hirai ◽  
...  

AbstractThis manuscript represents a review on progress made over the past decade concerning our understanding of meteoroid bombardment on airless solar system bodies as one of the sources of the formation of their exospheres. Specifically, observations at Mercury by MESSENGER and at the Moon by LADEE, together with progress made in dynamical models of the meteoroid environment in the inner solar system, offer new tools to explore in detail the physical phenomena involved in this complex relationship. This progress is timely given the expected results during the next decade that will be provided by new missions such as DESTINY+, BepiColombo, the Artemis program or the Lunar Gateway.


2007 ◽  
Vol 42 (1) ◽  
pp. 59-70 ◽  
Author(s):  
G. Eroshkin ◽  
V. Pashkevich

Geodetic Rotation of the Solar System Bodies The problem of the geodetic (relativistic) rotation of the major planets, the Moon, and the Sun is studied by using DE404/LE404 ephemeris. For each body the files of the ecliptical components of the vectors of the angular velocity of the geodetic rotation are determined over the time span from AD1000 to AD3000 with one day spacing. The most essential terms of the geodetic rotation are found by means of the least squares method and spectral analysis methods.


Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Vera Assis Fernandes

The forward planning of the return of Humans to the lunar surface as envisioned by different national and collaborative space agencies requires consideration of the fragility and pristine nature of the lunar surface. Current international treaties are outdated and require immediate action for their update and amendment. This should be taken as an opportunity for self-reflection and potential censoring, enabling a mature, responsible, and iterated sequence of decisions prior to returning. The protocols developed for assessing the ethical and social impacts of Humans on the lunar surface will provide a blueprint for planning future exploration activities on other planetary bodies in the Solar System and beyond.


2016 ◽  
Vol 51 (2) ◽  
pp. 61-73
Author(s):  
V.V. Pashkevich

Abstract This investigation is continuation of our studies of the geodetic (relativistic) rotation of the Solar system bodies (Eroshkin and Pashkevich, 2007) and (Eroshkin and Pashkevich, 2009). For each body (the Moon, the Sun, the major planets and Pluto) the files of the values of the components of the angular velocity of the geodetic rotation are constructed over the time span from AD1000 to AD3000 with one day spacing, by using DE422/LE422 ephemeris (Folkner, 2011), with respect to the proper coordinate systems of the bodies (Seidelmann et al., 2005). For the first time in the perturbing terms of the physical librations for the Moon and in Euler angles for other bodies of the Solar system the most essential terms of the geodetic rotation are found by means of the least squares method and spectral analysis methods.


2019 ◽  
Vol 54 (2) ◽  
pp. 31-42
Author(s):  
V.V. Pashkevich ◽  
A.N. Vershkov

Abstract In this study the relativistic effects (the geodetic precession and the geodetic nutation, which consist of the effect of the geodetic rotation) in the rotation of Mars satellites system for the first time were computed and the improved geodetic rotation of the Solar system bodies were investigated. The most essential terms of the geodetic rotation were computed by the algorithm of Pashkevich (2016), which is applicable to the study of any bodies of the Solar system that have long-time ephemeris. As a result, in the perturbing terms of the physical librations and Euler angles for Mars satellites (Phobos and Deimos) as well as in the perturbing terms of the physical librations for the Moon and Euler angles for major planets, Pluto and the Sun the most significant systematic and periodic terms of the geodetic rotation were calculated. In this research the additional periodic terms of the geodetic rotation for major planets, Pluto and the Moon were calculated.


Sign in / Sign up

Export Citation Format

Share Document