Effects of Agrobacterium rhizogenes strains and other parameters on production of isoflavonoids in hairy roots of Pueraria candollei Grah. ex Benth. var. candollei

2012 ◽  
Vol 111 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Pimsiri Danphitsanuparn ◽  
Panitch Boonsnongcheep ◽  
Thanaphol Boriboonkaset ◽  
Yupyn Chintapakorn ◽  
Sompop Prathanturarug
Nativa ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 266
Author(s):  
José Nicomedes Júnior ◽  
Roberta Cristiane Ribeiro ◽  
Luis Louro Berbara ◽  
Elvia Mariam Lis Martinez Stark ◽  
Wagner Campos Otoni ◽  
...  

O manjericão é uma planta medicinal e seus metabólitos especiais são utilizados com fins terapêuticos e industriais. Este trabalho teve por objetivo avaliar técnicas e linhagens de Agrobacterium rhizogenes na produção de raízes transformadas de duas variedades de Ocimum basilicum L., Dark Opal (roxo) e Minete Anão (verde). Verificou-se o efeito da inoculação com linhagens de A. rhizogenes selvagens (A4, 8196, 9402, 2659, 2659 G, 17242, LBA, 15834) ou transformadas (R1601) em plantas inteiras ou explantes (folhas e segmentos de caule) de manjericão, cultivados em casa de vegetação ou in vitro. A inoculação com as linhagens LBA e 8196 possibilitou redução no número de explantes de folha de manjericão-verde oxidados, quando comparado ao controle. Dentre as linhagens selvagens, as que proporcionaram melhor indução na produção de raízes transformadas foram A4, LBA e 8196, respectivamente. Entretanto, a cepa R1601 apresentou a melhor resposta. Raízes foram eficientemente induzidas mediante a inoculação de explantes de manjericão-roxo e manjericão-verde e expressaram o fenótipo típico de raízes em cabeleira (hairy roots). As culturas clonais de manjericão-verde apresentaram rápido crescimento em meio de cultura livre de reguladores de crescimento.Palavras-chave: agrobactéria, cultura de raízes, manjericão, plantas medicinais. TRANSFORMATION TECHNIQUES AND Agrobacterium rhizogenes Strains In The Production Of Hairy Roots Of Ocimum basilicum L. ABSTRACT:Basil is a medicinal plant and its special metabolites are used for therapeutic or industrial purposes. The aim of this work was to evaluate Agrobacterium rhizogenes techniques and strains in the production of hairy roots of two varieties of Ocimum basilicum L., Dark Opal (purple) and Dwarf Racer (green). The effects of inoculation of A. rhizogene (A4, 8196, 9402, 2659, 2659, 2659 G, 17242, LBA, 15834) or (R1601) lines on whole plants or explants (leaves and stem segments) of basil, grown in a greenhouse or in vitro, in the production of hairy roots and calluses made by subcultures. Inoculation with the LBA and 8196 lines allowed a reduction in the number of oxidized basil-green leaf explants when compared to the control. Among the wild strains, those that had best ability to induce hairy root of hairy roots were A4, LBA and 8196, respectively. However, the R1601 laboratory strain had the best response. Roots were efficiently induced by the inoculation of explants basil-purple and basil-green and expressed the typical phenotype of hairy roots. Green-basal clonal cultures showed rapid growth in culture medium free of growth regulators.Keywords: agrobacterim, basil, medicinal plants, root culture. DOI:


2009 ◽  
Vol 64 (9-10) ◽  
pp. 687-691 ◽  
Author(s):  
Latiporn Udomsuk ◽  
Kanokwan Jarukamjorn ◽  
Hiroyuki Tanaka ◽  
Waraporn Putalun

A hairy roots culture of Pueraria candollei was established using Agrobacterium rhizogenes ATCC15834 and grown in half-strength Murashige and Skoog (MS) medium. The highest production of total isoflavonoids was found to be (36.48 ± 4.09) mg/g dry wt [(3.39 ± 0.20) mg/g dry wt puerarin, (29.91 ± 3.74) mg/g dry wt daidzin, (1.65 ± 0.09) mg/g dry wt genistin, (0.76 ± 0.03) mg/g dry wt daidzein, and (0.76 ± 0.03) mg/g dry wt genistein, respectively]. The total isoflavonoid content in hairy roots of P. candollei was 5.18-fold higher than that of the native tuber. Effects of sucrose content and medium type on growth and isoflavonoid production were investigated. 5% (w/v) Sucrose was an optimum content for the growth and isoflavonoid accumulation in P. candollei hairy roots. Half-strength MS medium had the highest effect for biomass production whereas woody plant medium had mostly stimulated isoflavonoid content in hairy roots


2016 ◽  
Vol 19 (4) ◽  
pp. 64-75
Author(s):  
Phuong Dong Tra ◽  
Phuong Thi Bach Vu ◽  
Phuong Ngo Diem Quach

Balloon flower (Platycodon grandiflorum (Jacq.) A. DC.), the only species in Platycodon genus (Campanulaceae), is mainly distributed in East Asia. The rhizomes of P. grandiflorum, a traditional herbal medicine, have been widely used for the treatment of cough, sore throat, asthma, tuberculosis and other diseases. Recently, pharmacological researches identified important biological activities compounds in the rhizomes. Thus, to study and extract valuable compounds, a hairy root induced technique was achieved on P. grandiflorum for stable material with fast growth rates (in hormone-free media) and metabolites production. To achieve this, the “natural genetic tool” Agrobacterium rhizogenes, which can transfer DNA segments into genome of plant, was exploited. The results suggested two (A. rhizogenes ATCC 15834 and C34) of four A. rhizogenes strains could induce hairy roots. RolB and rolC genes, which are responsible for the induction of hairy roots, were inserted into the genome of hairy roots. Leaves had the highest infection frequency of hairy root induction 100 %. The optimization of protocol, including time of immersion and co-culture, had the best results with 10 and 15 mins (10 mins for A. rhizogenes ATCC 15834 and 15 mins for A. rhizogenes C34) and 72 hours, respectively. In the future, this protocol, which was described in this paper, should be useful for studying and isolating valuable compounds from P. grandiflorum hairy root cultures.


Biologia ◽  
2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Elnaz Nourozi ◽  
Bahman Hosseini ◽  
Abbas Hassani

AbstractHairy root culture system is a valuable tool to study the characteristics of gene expression, gene function, root biology, biochemical properties and biosynthesis pathways of secondary metabolites. In the present study, hairy roots were established in Anise hyssop (Agastache foeniculum) via Agrobacterium rhizogenes. Three strains of Agrobacterium rhizogenes (A4, A7 and 9435), were used for induction of hairy roots in four various explants (hypocotyl, cotyledon, one-month-old leaf and five-month-old leaf) of Anise hyssop. The highest frequency of transformation was achieved using A4 strain in one-month-old leaves (51.1%). The transgenic states of hairy root lines were confirmed by PCR (Polymerase chain reaction) method. High performance liquid chromatography analysis revealed that the production of rosmarinic acid (RA) in transformed roots of A. foeniculum was almost 4-fold higher than that of the non-transformed roots. In a separate experiment, hairy roots obtained from one-month-old leaves inoculated with A4 strain, were grown in liquid medium and the effects of different concentrations of salicylic acid (0.0, 0.01, 0.1 and 1 mM) and chitosan (0, 50, 100 and 150 mg L−1) (as elicitor) and sucrose (20, 30, 40 and 50 g L−1) on the growth of hairy roots were evaluated. The results showed that, 30 g L−1 sucrose and 100 mg L−1 chitosan increased the biomass of hairy root cultures and application of salicylic acid reduced the growth of hairy roots compared with control roots.


2016 ◽  
Vol 58 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Żaneta Michalec-Warzecha ◽  
Laura Pistelli ◽  
Francesca D’Angiolillo ◽  
Marta Libik-Konieczny

Abstract Leaves and internodes from Stevia rebaudiana Bertoni plants growing in different conditions were used for transformation with two strains of Agrobacterium rhizogenes: ATCC 15384 and LBA 9402. Hairy roots formation was observed and the percentage of the transformed explants depended on the type of explant, time of inoculation and inoculum concentration. Inoculation of explants from ex vitro and in vitro plants with LBA 9402 strain led to higher efficiency of transformation than inoculation with ATCC 15384 strain. Growth rate of hairy roots in liquid culture was assessed under light and dark conditions. It was found that the growth of hairy roots decreased significantly under light conditions. Transformation of hairy roots growing in different culture conditions was confirmed at the molecular level using PCR method with primers constructed against rolB and rolC genes from A. rhizogenes.


2017 ◽  
Vol 8 ◽  
Author(s):  
Pablo Peláez ◽  
Alejandrina Hernández-López ◽  
Georgina Estrada-Navarrete ◽  
Federico Sanchez

Sign in / Sign up

Export Citation Format

Share Document