scholarly journals The Role of Discrete Capillary Rings in Mass Transfer From the Surface of a Drying Capillary Porous Medium

Author(s):  
Hafiz Tariq Mahmood ◽  
Evangelos Tsotsas ◽  
Abdolreza Kharaghani

AbstractThe mass exchange between the surface of a model capillary porous medium and the adjacent gas-side boundary layer is studied in the limiting condition of isothermal, slow drying. In order to quantify the role and significance of liquid films in the mass exchange process, three-dimensional pore network Monte Carlo simulations are carried out systematically in the presence and absence of discrete capillary rings. The pore network simulations performed with capillary rings show a noticeable delay in transition from the capillary-supported regime to the diffusion-controlled regime. These simulation results differ significantly from the predictions of classical pore network models without liquid films, and they appear to be more consistent with the experiments conducted with real porous systems. As compared to classical pore network models, the pore network model with rings seems to predict favorably the spatiotemporal evolution of wet and dry patches at the medium surface as well as of their relative contributions to the net mass exchange rate. This is apparent when the analytical solution of the commonly used Schlünder’s model is examined against the numerical simulations conducted using classical and ring pore network models.

Author(s):  
Evgeniy Podoplelov ◽  
Aleksey Bal'chugov ◽  
Anatoliy Dement'ev ◽  
Anatoliy Glotov

. The interaction of gas and liquid phases in some cases is accompanied by the spontaneous occur-rence of convective flows and turbulent pulsations at the phase boundary and in adjacent areas. Hy-drodynamic instability allows to accelerate the interfacial transfer of matter and leads to an increase in mass transfer coefficients. Research in this field is not only theoretical, but also practical, since sur-face convection can be artificially created in apparatus for intensifying the mass exchange process.


2021 ◽  
Vol 3 (72) ◽  
pp. 21-26
Author(s):  
B. Kantsyrev

When constructing numerical models of the atmosphere and the surface atmospheric layer (PAS) interacting with it, the “parametrization” approach is used, that is, the representation of processes with scales smaller than the scale of the cells of the computational grid intended for modeling processes of larger scales.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012001
Author(s):  
Jianlin Zhao ◽  
Feifei Qin ◽  
Dominique Derome ◽  
Jan Carmeliet

Abstract Drying at macroscale shows a first drying period with constant drying rate followed by second drying period showing a receding moisture front, phenomena that can be tailored upon need. In order to study the drying of materials, we present a new hybrid computational method, where the dynamics of the liquid-vapor interfaces is modelled by lattice Boltzmann modelling (LBM) in the two-phase pores, while the single-phase flow in the pores filled solely by vapor or liquid is solved by pore network model (PNM). This hybrid method is validated by comparison with reference full LBM simulations. The hybrid method combines the advantages of both methods, i.e., accuracy and computational efficiency. LBM and the hybrid LBM-PNM method are used to study the drying of porous media at pore scale. We analyse two different pore structures and consider how capillary pumping effect can maximize the drying rate. Finally, we indicate how optimized drying rates are relevant when designing facade or pavement solutions that can mitigate higher surface temperatures in urban environments by evaporative cooling.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4104 ◽  
Author(s):  
Hai Sun ◽  
Lian Duan ◽  
Lei Liu ◽  
Weipeng Fan ◽  
Dongyan Fan ◽  
...  

In this paper, the influence of micro-fractures on the flow of tight reservoirs is studied on the microscopic scale. Three-dimensional digital cores of fractured tight sandstone with varying fracture apertures, lengths, and dip angles are constructed using computed tomography (CT) scans. Pore-network models are built using the three-dimensional digital cores to simulate the flow in tight oil reservoirs. The effects of the micro-fracture aperture, length and dip angle on the pore-throat structure, single-phase flow, and two-phase flow for fracture surfaces with/without roughness are studied. The study demonstrates different influences of micro-fracture characteristics on the flow, and the fracture aperture has the most critical effect. Meanwhile, the roughness of the micro-fracture makes a difference in addition to the three factors of micro-fractures. This paper provides a theoretical basis for the effective development of tight sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document