Slurry Erosion Wear Resistance and Impact-Induced Phase Transformation of Titanium Alloys

2018 ◽  
Vol 66 (2) ◽  
Author(s):  
Xiulin Ji ◽  
Qinyu Qing ◽  
Cuicui Ji ◽  
Jiangbo Cheng ◽  
Yingtao Zhang
2012 ◽  
Vol 55 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Xiulin Ji ◽  
Shunzhen Yang ◽  
Jianhua Zhao ◽  
Chunyan Yan ◽  
Liangfeng Jiang

2008 ◽  
Vol 373-374 ◽  
pp. 27-30 ◽  
Author(s):  
Z.X. Ding ◽  
Q. Wang ◽  
Zheng Lin Liu

In the paper, nanostructured, multimodal and conventional WC-12Co cermet coatings were sprayed by HVOF and the properties and structures of the coatings such as microhardness, microstructure, phase composition were compared. Finally sand solid and slurry erosion wear tests were carried out and their wear failure mechanisms were explored by XRD and SEM analysis. Research results show that microstructures of nanostructured and multimodal WC-12Co coatings prepared by HVOF are dense with little porosity, and their microhardness values are obviously higher than conventional WC-12Co coating. As well, it was found that nanostructured and multimodal WC-12Co coatings exhibited better sand solid and slurry erosion wear resistance in comparison with conventional coating and nanostructured WC-12Co coatings possessed the best sand solid erosion resistance properties at large impact angles and slurry erosion wear resistance. Testing results also show that although decarburization of WC occurred during spraying multimodal and nanostructured WC-12Co powders, the decarburization of WC for the nanostructured powder was more severe.


2018 ◽  
Vol 70 (9) ◽  
pp. 1721-1728 ◽  
Author(s):  
Kaushal Kumar ◽  
Satish Kumar ◽  
Munish Gupta ◽  
Hem Chander Garg

Purpose This paper aims at erosion wear experimentation conducted on two piping materials, namely SS202 and SS304 to establish the effect of rotational speed, concentration and time period. Design/methodology/approach Erosion wear because of slurry flow is investigated using a slurry erosion pot tester. Fly ash is taken as erodent material having different solid concentrations lie in range 30 to 60per cent (by weight). Experiments are performed at four different speeds, i.e. 600; 900; 1,200; and 1,500 rpm for time duration of 90, 120, 150 and 180 min, respectively. To enhance erosion wear resistance of both piping materials, high-velocity-oxy-fuel coating technique is used to deposit WC-10Co4Cr coating. The parametric influence of erosion wear is optimized using Taguchi method. Findings The results show that significant improvement in erosion wear resistance is observed by deposition of WC-10Co4Cr coating. It is observed that rotational speed is found as highly influencing parameter followed by concentration and time duration. Parametric investigation of erosion wear is helpful to develop a procedure for minimizing the erosion wear in pipeline for the flow of solid-liquid mixture. Originality/value Slurry erosion wear of WC-10Co4Cr coated stainless steel (SS202 and SS304) is substantiated by extensive microstructural analysis and optimization technique.


2013 ◽  
Vol 22 (12) ◽  
pp. 3689-3698 ◽  
Author(s):  
S. Sathik Basha ◽  
V. M. Periasamy ◽  
M. Kamaraj ◽  
S. M. Shariff

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Shu Wang ◽  
Yilong Liang ◽  
Hao Sun ◽  
Xin Feng ◽  
Chaowen Huang

The main objective of the present study was to understand the oxygen ingress in titanium alloys at high temperatures. Investigations reveal that the oxygen diffusion layer (ODL) caused by oxygen ingress significantly affects the mechanical properties of titanium alloys. In the present study, the high-temperature oxygen ingress behavior of TC21 alloy with a lamellar microstructure was investigated. Microstructural characterizations were analyzed through optical microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). Obtained results demonstrate that oxygen-induced phase transformation not only enhances the precipitation of secondary α-phase (αs) and forms more primary α phase (αp), but also promotes the recrystallization of the ODL. It was found that as the temperature of oxygen uptake increases, the thickness of the ODL initially increases and then decreases. The maximum depth of the ODL was obtained for the oxygen uptake temperature of 960 °C. In addition, a gradient microstructure (αp + β + βtrans)/(αp + βtrans)/(αp + β) was observed in the experiment. Meanwhile, it was also found that the hardness and dislocation density in the ODL is higher than that that of the matrix.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


Wear ◽  
2017 ◽  
Vol 388-389 ◽  
pp. 126-135 ◽  
Author(s):  
N. Ojala ◽  
K. Valtonen ◽  
J. Minkkinen ◽  
V.-T. Kuokkala

Sign in / Sign up

Export Citation Format

Share Document