A synthetic peptide derived from domain III envelope glycoprotein of Dengue virus induces neutralizing antibody

Virus Genes ◽  
2017 ◽  
Vol 54 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Asnet Mary ◽  
Akanitt Jittmittraphap ◽  
Siriporn Chattanadee ◽  
Pornsawan Leaungwutiwong ◽  
R. Shenbagarathai
2018 ◽  
Vol 92 (18) ◽  
Author(s):  
Julia C. Frei ◽  
Ariel S. Wirchnianski ◽  
Jennifer Govero ◽  
Olivia Vergnolle ◽  
Kimberly A. Dowd ◽  
...  

ABSTRACTDengue virus is the most globally prevalent mosquito-transmitted virus. Primary infection with one of four cocirculating serotypes (DENV-1 to -4) causes a febrile illness, but secondary infection with a heterologous serotype can result in severe disease, due in part to antibody-dependent enhancement of infection (ADE). In ADE, cross-reactive but nonneutralizing antibodies, or subprotective levels of neutralizing antibodies, promote uptake of antibody-opsonized virus in Fc-γ receptor-positive cells. Thus, elicitation of broadly neutralizing antibodies (bNAbs), but not nonneutralizing antibodies, is desirable for dengue vaccine development. Domain III of the envelope glycoprotein (EDIII) is targeted by bNAbs and thus is an attractive immunogen. However, immunization with EDIII results in sera with limited neutralization breadth. We developed “resurfaced” EDIII immunogens (rsDIIIs) in which the A/G strand epitope that is targeted by bNAb 4E11 is maintained but less desirable epitopes are masked. RsDIIIs bound 4E11, but not serotype-specific or nonneutralizing antibodies. One rsDIII and, unexpectedly, wild-type (WT) DENV-2 EDIII elicited cross-neutralizing antibody responses against DENV-1 to -3 in mice. While these sera were cross-neutralizing, they were not sufficiently potent to protect AG129 immunocompromised mice at a dose of 200 μl (50% focus reduction neutralization titer [FRNT50], ∼1:60 to 1:130) against mouse-adapted DENV-2. Our results provide insight into immunogen design strategies based on EDIII.IMPORTANCEDengue virus causes approximately 390 million infections per year. Primary infection by one serotype causes a self-limiting febrile illness, but secondary infection by a heterologous serotype can result in severe dengue syndrome, which is characterized by hemorrhagic fever and shock syndrome. This severe disease is thought to arise because of cross-reactive, non- or poorly neutralizing antibodies from the primary infection that are present in serum at the time of secondary infection. These cross-reactive antibodies enhance the infection rather than controlling it. Therefore, induction of a broadly and potently neutralizing antibody response is desirable for dengue vaccine development. Here, we explore a novel strategy for developing immunogens based on domain III of the E glycoprotein, where undesirable epitopes (nonneutralizing or nonconserved) are masked by mutation. This work provides fundamental insight into the immune response to domain III that can be leveraged for future immunogen design.


2014 ◽  
Vol 89 (1) ◽  
pp. 743-750 ◽  
Author(s):  
Xinzheng Zhang ◽  
Ju Sheng ◽  
S. Kyle Austin ◽  
Tabitha E. Hoornweg ◽  
Jolanda M. Smit ◽  
...  

ABSTRACTFlaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However, the dynamic nature of the fusogenic trimer has made the determination of its structure a challenge. Here we have used Fab fragments of the neutralizing antibody DV2-E104 to stop the conformational change of dengue virus at an intermediate stage of the fusion process. Using cryo-electron microscopy, we show that in this intermediate stage, the E glycoproteins form 60 trimers that are similar to the predicted “open” fusogenic trimer.IMPORTANCEThe structure of a dengue virus has been captured during the formation of fusogenic trimers. This was accomplished by binding Fab fragments of the neutralizing antibody DV2-E104 to the virus at neutral pH and then decreasing the pH to 5.5. These trimers had an “open” conformation, which is distinct from the “closed” conformation of postfusion trimers. Only two of the three E proteins within each spike are bound by a Fab molecule at domain III. Steric hindrance around the icosahedral 3-fold axes prevents binding of a Fab to the third domain III of each E protein spike. Binding of the DV2-E104 Fab fragments prevents domain III from rotating by about 130° to the postfusion orientation and thus precludes the stem region from “zipping” together the three E proteins along the domain II boundaries into the “closed” postfusion conformation, thus inhibiting fusion.


2011 ◽  
Vol 18 (3) ◽  
pp. 455-459 ◽  
Author(s):  
Iris Valdés ◽  
Lázaro Gil ◽  
Yaremis Romero ◽  
Jorge Castro ◽  
Pedro Puente ◽  
...  

ABSTRACTUse of a heterologous prime-boost strategy based on a combination of nonreplicative immunogens and candidate attenuated virus vaccines against dengue virus in the same schedule is an attractive approach. These combinations may result in a condensed immunization regime for humans, thus reducing the number of doses with attenuated virus and the time spacing. The present work deals with the evaluation of the heterologous prime-boost strategy combining a novel chimeric protein (domain III-capsid) of dengue virus serotype 2 (DEN-2) and the infective homologous virus in the same immunization schedule in monkeys. Primed monkeys received one dose of infective DEN-2 and were then vaccinated with the recombinant protein. We found that animals developed a neutralizing antibody response after the infective dose and were notably boosted with a second dose of the chimeric protein 3 months later. The neutralizing antibodies induced were long lasting, and animals also showed the ability to induce a specific cellular response 6 months after the booster dose. As a conclusion, we can state that the domain III region, when it is properly presented as a fusion protein to the immune system, is able to recall the neutralizing antibody response elicited following homologous virus infection in monkeys. Further prime-boost approaches can be performed in a condensed regime combining the chimeric domain III-capsid protein and candidate live attenuated vaccines against DEN-2.


2014 ◽  
Vol 95 (10) ◽  
pp. 2155-2165 ◽  
Author(s):  
Peng-Yeh Lai ◽  
Chia-Tse Hsu ◽  
Shao-Hung Wang ◽  
Jin-Ching Lee ◽  
Min-Jen Tseng ◽  
...  

Dengue virus (DENV; genus Flavivirus) contains a positive-stranded RNA genome. Binding of DENV to host cells is mediated through domain III of the viral envelope protein. Many therapeutic mAbs against domain III have been generated and characterized because of its high antigenicity. We have previously established a novel PCR method named the linear array epitope (LAE) technique for producing monoclone-like polyclonal antibodies. To prove this method could be utilized to produce antibody against epitopes with low antigenicity, a region of 10 aa (V365NIEAEPPFG374) from domain III of the envelope protein in DENV serotype 2 (DENV2) was selected to design the primers for the LAE technique. A DNA fragment encoding 10 directed repeats of these 10 aa for producing the tandem-repeated peptides was obtained and fused with glutathione S-transferase (GST)-containing vector. This fusion protein (GST-Den EIII10-His6) was purified from Escherichia coli and used as antigen for immunizing rabbits to obtain the polyclonal antibody. Furthermore, the EIII antibody could recognize envelope proteins either ectopically overexpressed or synthesized by DENV2 infection using Western blot and immunofluorescence assays. Most importantly, this antibody was also able to detect DENV2 virions by ELISA, and could block viral entry into BHK-21 cells as shown by immunofluorescence and quantitative real-time PCR assays. Taken together, the LAE technique could be applied successfully for the production of antibodies against antigens with low antigenicity, and shows high potential to produce antibodies with good quality for academic research, diagnosis and even therapeutic applications in the future.


2009 ◽  
Vol 83 (20) ◽  
pp. 10384-10394 ◽  
Author(s):  
Germán Añez ◽  
Ruhe Men ◽  
Kenneth H. Eckels ◽  
Ching-Juh Lai

ABSTRACT Three dengue virus type 4 (DENV-4) vaccine candidates containing deletions in the 3′ noncoding region were prepared by passage in DBS-FRhL-2 (FRhL) cells. Unexpectedly, these vaccine candidates and parental DENV-4 similarly passaged in the same cells failed to elicit either viremia or a virus-neutralizing antibody response. Consensus sequence analysis revealed that each of the three viruses, as well as the parental DENV-4 when passaged in FRhL cells, rapidly acquired a single Glu327-Gly substitution in domain III (DIII) of the envelope protein (E). These variants appear to have accumulated in response to growth adaptation to FRhL cells as shown by growth analysis, and the mutation was not detected in the virus following passage in C6/36 cells, primary African green monkey kidney cells, or Vero cells. The Glu327-Gly substitution was predicted by molecular modeling to increase the net positive charge on the surface of E. The Glu327-Gly variant of the full-length DENV-4 selected after three passages in FRhL cells showed increased affinity for heparan sulfate compared to the unpassaged DENV-4, as measured by heparin binding and infectivity inhibition assays. Evidence indicates that the Glu327-Gly mutation in DIII of the DENV-4 E protein was responsible for reduced infectivity and immunogenicity in rhesus monkeys. Our results point out the importance of cell substrates for vaccine preparation since the virus may change during passages in certain cells through adaptive selection, and such mutations may affect cell tropism, virulence, and vaccine efficacy.


2013 ◽  
Vol 158 (7) ◽  
pp. 1523-1531 ◽  
Author(s):  
Hsin-Wei Chen ◽  
Shih-Jen Liu ◽  
Yi-Shiuan Li ◽  
Hsueh-Hung Liu ◽  
Jy-Ping Tsai ◽  
...  

2010 ◽  
Vol 342 (1-2) ◽  
pp. 215-221 ◽  
Author(s):  
Lien-Cheng Chen ◽  
Trai-Ming Yeh ◽  
Yi-Ying Lin ◽  
Yi-Fen Wang ◽  
Shu-Jem Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document