scholarly journals A Benchmark and Evaluation of Non-Rigid Structure from Motion

Author(s):  
Sebastian Hoppe Nesgaard Jensen ◽  
Mads Emil Brix Doest ◽  
Henrik Aanæs ◽  
Alessio Del Bue

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.

Author(s):  
Gabriel S. Ferrante ◽  
Felipe M. Rodrigues ◽  
Fernando R. H. Andrade ◽  
Rudinei Goularte ◽  
Rodolfo I. Meneguette

Author(s):  
Judith Good

In 2011, the author published an article that looked at the state of the art in novice programming environments. At the time, there had been an increase in the number of programming environments that were freely available for use by novice programmers, particularly children and young people. What was interesting was that they offered a relatively sophisticated set of development and support features within motivating and engaging environments, where programming could be seen as a means to a creative end, rather than an end in itself. Furthermore, these environments incorporated support for the social and collaborative aspects of learning. The article considered five environments—Scratch, Alice, Looking Glass, Greenfoot, and Flip—examining their characteristics and investigating the opportunities they might offer to educators and learners alike. It also considered the broader implications of such environments for both teaching and research. In this chapter, the author revisits the same five environments, looking at how they have changed in the intervening years. She considers their evolution in relation to changes in the field more broadly (e.g., an increased focus on “programming for all”) and reflects on the implications for teaching, as well as research and further development.


Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


1979 ◽  
Vol 43 (4) ◽  
pp. 55-68 ◽  
Author(s):  
Vijay Mahajan ◽  
Eitan Muller

This paper assesses the state-of-the-art of the diffusion models of new product acceptance. A number of issues related to the further development and validation of these models are discussed.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


Author(s):  
Eugene Yujun Fu ◽  
Hong Va Leong ◽  
Grace Ngai ◽  
Stephen C.F. Chan

Purpose Social signal processing under affective computing aims at recognizing and extracting useful human social interaction patterns. Fight is a common social interaction in real life. A fight detection system finds wide applications. This paper aims to detect fights in a natural and low-cost manner. Design/methodology/approach Research works on fight detection are often based on visual features, demanding substantive computation and good video quality. In this paper, the authors propose an approach to detect fight events through motion analysis. Most existing works evaluated their algorithms on public data sets manifesting simulated fights, where the fights are acted out by actors. To evaluate real fights, the authors collected videos involving real fights to form a data set. Based on the two types of data sets, the authors evaluated the performance of their motion signal analysis algorithm, which was then compared with the state-of-the-art approach based on MoSIFT descriptors with Bag-of-Words mechanism, and basic motion signal analysis with Bag-of-Words. Findings The experimental results indicate that the proposed approach accurately detects fights in real scenarios and performs better than the MoSIFT approach. Originality/value By collecting and annotating real surveillance videos containing real fight events and augmenting with well-known data sets, the authors proposed, implemented and evaluated a low computation approach, comparing it with the state-of-the-art approach. The authors uncovered some fundamental differences between real and simulated fights and initiated a new study in discriminating real against simulated fight events, with very good performance.


Plant Methods ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Haipeng Xiong ◽  
Zhiguo Cao ◽  
Hao Lu ◽  
Simon Madec ◽  
Liang Liu ◽  
...  

Abstract Background Grain yield of wheat is greatly associated with the population of wheat spikes, i.e., $$spike~number~\text {m}^{-2}$$spikenumberm-2. To obtain this index in a reliable and efficient way, it is necessary to count wheat spikes accurately and automatically. Currently computer vision technologies have shown great potential to automate this task effectively in a low-end manner. In particular, counting wheat spikes is a typical visual counting problem, which is substantially studied under the name of object counting in Computer Vision. TasselNet, which represents one of the state-of-the-art counting approaches, is a convolutional neural network-based local regression model, and currently benchmarks the best record on counting maize tassels. However, when applying TasselNet to wheat spikes, it cannot predict accurate counts when spikes partially present. Results In this paper, we make an important observation that the counting performance of local regression networks can be significantly improved via adding visual context to the local patches. Meanwhile, such context can be treated as part of the receptive field without increasing the model capacity. We thus propose a simple yet effective contextual extension of TasselNet—TasselNetv2. If implementing TasselNetv2 in a fully convolutional form, both training and inference can be greatly sped up by reducing redundant computations. In particular, we collected and labeled a large-scale wheat spikes counting (WSC) dataset, with 1764 high-resolution images and 675,322 manually-annotated instances. Extensive experiments show that, TasselNetv2 not only achieves state-of-the-art performance on the WSC dataset ($$91.01\%$$91.01% counting accuracy) but also is more than an order of magnitude faster than TasselNet (13.82 fps on $$912\times 1216$$912×1216 images). The generality of TasselNetv2 is further demonstrated by advancing the state of the art on both the Maize Tassels Counting and ShanghaiTech Crowd Counting datasets. Conclusions This paper describes TasselNetv2 for counting wheat spikes, which simultaneously addresses two important use cases in plant counting: improving the counting accuracy without increasing model capacity, and improving efficiency without sacrificing accuracy. It is promising to be deployed in a real-time system with high-throughput demand. In particular, TasselNetv2 can achieve sufficiently accurate results when training from scratch with small networks, and adopting larger pre-trained networks can further boost accuracy. In practice, one can trade off the performance and efficiency according to certain application scenarios. Code and models are made available at: https://tinyurl.com/TasselNetv2.


2015 ◽  
Vol 10 (S318) ◽  
pp. 16-27 ◽  
Author(s):  
Zoran Knežević

AbstractThe history of asteroid families, from their discovery back in 1918, until the present time, is briefly reviewed. Two threads have been followed: on the development of the theories of asteroid motion and the computation of proper elements, and on the methods of classification themselves. Three distinct periods can be distinguished: the first one until mid-1930s, devoted to discovery and first attempts towards understanding of the properties of families; the second one, until early 1980s, characterized by a growing understanding of their importance as key evidence of the collisional evolution; the third one, characterized by an explosion of work and results, comprises the contemporary era. An assessment is given of the state-of-the-art and possible directions for the future effort, focusing on the dynamical studies, and on improvements of classification methods to cope with ever increasing data set.


2021 ◽  
Vol 11 (6) ◽  
pp. 2599
Author(s):  
Felix Nobis ◽  
Felix Fent ◽  
Johannes Betz ◽  
Markus Lienkamp

State-of-the-art 3D object detection for autonomous driving is achieved by processing lidar sensor data with deep-learning methods. However, the detection quality of the state of the art is still far from enabling safe driving in all conditions. Additional sensor modalities need to be used to increase the confidence and robustness of the overall detection result. Researchers have recently explored radar data as an additional input source for universal 3D object detection. This paper proposes artificial neural network architectures to segment sparse radar point cloud data. Segmentation is an intermediate step towards radar object detection as a complementary concept to lidar object detection. Conceptually, we adapt Kernel Point Convolution (KPConv) layers for radar data. Additionally, we introduce a long short-term memory (LSTM) variant based on KPConv layers to make use of the information content in the time dimension of radar data. This is motivated by classical radar processing, where tracking of features over time is imperative to generate confident object proposals. We benchmark several variants of the network on the public nuScenes data set against a state-of-the-art pointnet-based approach. The performance of the networks is limited by the quality of the publicly available data. The radar data and radar-label quality is of great importance to the training and evaluation of machine learning models. Therefore, the advantages and disadvantages of the available data set, regarding its radar data, are discussed in detail. The need for a radar-focused data set for object detection is expressed. We assume that higher segmentation scores should be achievable with better-quality data for all models compared, and differences between the models should manifest more clearly. To facilitate research with additional radar data, the modular code for this research will be made available to the public.


Author(s):  
André Victória Matias ◽  
João Gustavo Atkinson Amorim ◽  
Luiz Antonio Buschetto Macarini ◽  
Allan Cerentini ◽  
Alexandre Sherlley Casimiro Onofre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document