A Low Complexity Reconfigurable DCT Architecture to Trade off Image Quality for Power Consumption

2008 ◽  
Vol 53 (3) ◽  
pp. 399-410 ◽  
Author(s):  
Jongsun Park ◽  
Kaushik Roy
2021 ◽  
Vol 17 (2) ◽  
pp. 1-25
Author(s):  
Dat Tran ◽  
Christof Teuscher

Emerging memcapacitive nanoscale devices have the potential to perform computations in new ways. In this article, we systematically study, to the best of our knowledge for the first time, the computational capacity of complex memcapacitive networks, which function as reservoirs in reservoir computing, one of the brain-inspired computing architectures. Memcapacitive networks are composed of memcapacitive devices randomly connected through nanowires. Previous studies have shown that both regular and random reservoirs provide sufficient dynamics to perform simple tasks. How do complex memcapacitive networks illustrate their computational capability, and what are the topological structures of memcapacitive networks that solve complex tasks with efficiency? Studies show that small-world power-law (SWPL) networks offer an ideal trade-off between the communication properties and the wiring cost of networks. In this study, we illustrate the computing nature of SWPL memcapacitive reservoirs by exploring the two essential properties: fading memory and linear separation through measurements of kernel quality. Compared to ideal reservoirs, nanowire memcapacitive reservoirs had a better dynamic response and improved their performance by 4.67% on three tasks: MNIST, Isolated Spoken Digits, and CIFAR-10. On the same three tasks, compared to memristive reservoirs, nanowire memcapacitive reservoirs achieved comparable performance with much less power, on average, about 99× , 17×, and 277×, respectively. Simulation results of the topological transformation of memcapacitive networks reveal that that topological structures of the memcapacitive SWPL reservoirs did not affect their performance but significantly contributed to the wiring cost and the power consumption of the systems. The minimum trade-off between the wiring cost and the power consumption occurred at different network settings of α and β : 4.5 and 0.61 for Biolek reservoirs, 2.7 and 1.0 for Mohamed reservoirs, and 3.0 and 1.0 for Najem reservoirs. The results of our research illustrate the computational capacity of complex memcapacitive networks as reservoirs in reservoir computing. Such memcapacitive networks with an SWPL topology are energy-efficient systems that are suitable for low-power applications such as mobile devices and the Internet of Things.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1671 ◽  
Author(s):  
Alexander Griffiths ◽  
Johannes Herrnsdorf ◽  
Christopher Lowe ◽  
Malcolm Macdonald ◽  
Robert Henderson ◽  
...  

Communicating information at the few photon level typically requires some complexity in the transmitter or receiver in order to operate in the presence of noise. This in turn incurs expense in the necessary spatial volume and power consumption of the system. In this work, we present a self-synchronised free-space optical communications system based on simple, compact and low power consumption semiconductor devices. A temporal encoding method, implemented using a gallium nitride micro-LED source and a silicon single photon avalanche photo-detector (SPAD), demonstrates data transmission at rates up to 100 kb/s for 8.25 pW received power, corresponding to 27 photons per bit. Furthermore, the signals can be decoded in the presence of both constant and modulated background noise at levels significantly exceeding the signal power. The system’s low power consumption and modest electronics requirements are demonstrated by employing it as a communications channel between two nano-satellite simulator systems.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1617
Author(s):  
Ioannis Intzes ◽  
Hongying Meng ◽  
John Cosmas

Wireless Capsule Endoscopy is a state-of-the-art technology for medical diagnoses of gastrointestinal diseases. The amount of data produced by an endoscopic capsule camera is huge. These vast amounts of data are not practical to be saved internally due to power consumption and the available size. So, this data must be transmitted wirelessly outside the human body for further processing. The data should be compressed and transmitted efficiently in the domain of power consumption. In this paper, a new approach in the design and implementation of a low complexity, multiplier-less compression algorithm is proposed. Statistical analysis of capsule endoscopy images improved the performance of traditional lossless techniques, like Huffman coding and DPCM coding. Furthermore the Huffman implementation based on simple logic gates and without the use of memory tables increases more the speed and reduce the power consumption of the proposed system. Further analysis and comparison with existing state-of-the-art methods proved that the proposed method has better performance.


2012 ◽  
Vol 33 (10) ◽  
pp. 1867-1874 ◽  
Author(s):  
J. Fruehwald-Pallamar ◽  
P. Szomolanyi ◽  
N. Fakhrai ◽  
A. Lunzer ◽  
M. Weber ◽  
...  

Author(s):  
Vishnu V. Ratnam ◽  
Andreas F. Molisch ◽  
Naif Rabeah ◽  
Faisal Alawwad ◽  
Hatim Behairy
Keyword(s):  

Author(s):  
Sandrine Boumard ◽  
Mika Lasanen ◽  
Olli Apilo ◽  
Atso Hekkala ◽  
Cedric Cassan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document