Influence of the bacterioplankton community of a tropical eutrophic lagoon on the bacterial community of its neighbouring ocean

2010 ◽  
Vol 26 (10) ◽  
pp. 1865-1873 ◽  
Author(s):  
Rodrigo Gouvêa Taketani ◽  
Fábio Vieira de Araújo ◽  
Fabiana de Souza Cannavan ◽  
Siu Mui Tsai ◽  
Alexandre Soares Rosado
2004 ◽  
Vol 70 (3) ◽  
pp. 1494-1505 ◽  
Author(s):  
Byron C. Crump ◽  
Charles S. Hopkinson ◽  
Mitchell L. Sogin ◽  
John E. Hobbie

ABSTRACT Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.


2021 ◽  
Vol 9 (11) ◽  
pp. 2260
Author(s):  
Qianqian Zhang ◽  
Zhenbing Wu ◽  
Juan Zhao ◽  
Guojie Wang ◽  
Jingwen Hao ◽  
...  

Bacterial community plays a key role in environmental and ecological processes of river ecosystems. Given the special climatic and geographical conditions, studying the compositional characteristics of microorganisms in highland rivers and the relationship between such microorganisms and water physicochemical factors is important for an in-depth understanding of microbial ecological mechanisms. In the present study, high-throughput sequencing was used to investigate and study the bacterioplankton community of the Huangshui River in the ecotone zone of the Qinghai Plateau and Loess Plateau. The results showed that the Huangshui River had significantly lower alpha diversity than the plain rivers. Despite the similarity in their environmental conditions, the main taxonomic compositions of the bacterial communities were distinct between the Huangshui River and polar regions (the Arctic and Antarctica). Proteobacteria accounted for the largest proportion (30.79–99.98%) of all the sequences, followed by Firmicutes (0–49.38%). Acidiphilium was the most numerous genera, which accounted for 0.03–86.16% of the assigned 16S reads, followed by Acidocella (0–95.9%), both belonging to Alphaproteobacteria. The diverse taxa of potential pathogens, such as Acinetobacter, Pseudomonas, and Aeromonas, were also identified. A principal coordinates analysis, coupled with a canonical correspondence analysis, showed spatial variations in the bacterial community composition. The water physical properties (e.g., Cr6+, total phosphorus, and CODMn); altitude; and land use (e.g., urban land cover and aquaculture) determined the distribution of the bacterioplankton composition. PICRUSt2 revealed that the overall functional profiles of the bacterial communities in different samples were similar, and our results suggested the potential health risks of water sources in this area. This work provided valuable insight into the composition of the plankton bacterial community and its relationship with the environmental factors in the Huangshui River in the ecotone zone of the Qinghai Plateau and Loess Plateau and a theoretical foundation for ecological health management.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2836
Author(s):  
Ivo Pinto ◽  
Rita Calisto ◽  
Cláudia R. Serra ◽  
Olga M. Lage ◽  
Sara C. Antunes

The Water Framework Directive (WFD) is used to evaluate the water quality of aquatic ecosystems. Phytoplankton is the only biological element considered in the reservoirs water quality assessment. In this study, we aimed to assess the use of the bacterioplankton community as an indicator of water quality, using a culture-independent assay (denaturing gradient gel electrophoresis, DGGE). Four Portuguese reservoirs (Miranda, Pocinho, Aguieira and Alqueva) were analysed in four periods (autumn 2018, spring and autumn 2019, and spring 2020). Bacterial total abundance had similar values for Miranda, Pocinho and Aguieira, and generally lower values for Alqueva. Diversity and richness values did not show a clear trend. Negative correlations were observed between some nutrients and the bacterial community. Overall, members of Actinobacteria, Bacteroidetes, Cyanobacteria, Nitrospirae and Proteobacteria were identified in all sampling sites. In Alqueva, no spatial, temporal or water body quality relationships with bacterial community were observed, which may be due to its higher size, low water velocity rate and higher residence times. However, in Miranda, Pocinho and Aguieira, a strong spatial and temporal bacterial community dynamic was observed. Furthermore, the presence of some species (e.g., Acinetobacter sp.) may reflect the poor water quality that was not detected by the WFD approach.


2011 ◽  
Vol 77 (11) ◽  
pp. 3726-3733 ◽  
Author(s):  
Christian Stolle ◽  
Matthias Labrenz ◽  
Christian Meeske ◽  
Klaus Jürgens

ABSTRACTThe bacterial community in the sea surface microlayer (SML) (bacterioneuston) is exposed to unique physicochemical properties and stronger meteorological influences than the bacterial community in the underlying water (ULW) (bacterioplankton). Despite extensive research, however, the structuring factors of the bacterioneuston remain enigmatic. The aim of this study was to examine the effect of meteorological conditions on bacterioneuston and bacterioplankton community structures and to identify distinct, abundant, active bacterioneuston members. Nineteen bacterial assemblages from the SML and ULW of the southern Baltic Sea, sampled from 2006 to 2008, were compared. Single-strand conformation polymorphism (SSCP) fingerprints were analyzed to distinguish total (based on the 16S rRNA gene) and active (based on 16S rRNA) as well as nonattached and particle-attached bacterial assemblages. The nonattached communities of the SML and ULW were very similar overall (similarity: 47 to 99%; mean: 88%). As an exception, during low wind speeds and high radiation levels, the active bacterioneuston community increasingly differed from the active bacterioplankton community. In contrast, the particle-attached assemblages in the two compartments were generally less similar (similarity: 8 to 98%; mean: 62%), with a strong variability in the active communities that was solely related to wind speed. Both nonattached and particle-attached active members of the bacterioneuston, which were found exclusively in the SML, were related to environmental clones belonging to theCyanobacteria,Bacteroidetes, andAlpha-,Beta-, andGammaproteobacteriaoriginally found in diverse habitats, but especially in water columns. These results suggest that bacterioneuston communities are strongly influenced by the ULW but that specific meteorological conditions favor the development of distinctive populations in the air-water interface.


2014 ◽  
Vol 81 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Kai Wang ◽  
Demin Zhang ◽  
Jinbo Xiong ◽  
Xinxin Chen ◽  
Jialai Zheng ◽  
...  

ABSTRACTMultiple anthropogenic disturbances to bacterial diversity have been investigated in coastal ecosystems, in which temporal variability in the bacterioplankton community has been considered a ubiquitous process. However, far less is known about the temporal dynamics of a bacterioplankton community responding to pollution disturbances such as toxic metals. We used coastal water microcosms perturbed with 0, 10, 100, and 1,000 μg liter−1of cadmium (Cd) for 2 weeks to investigate temporal variability, Cd-induced patterns, and their interaction in the coastal bacterioplankton community and to reveal whether the bacterial community structure would reflect the Cd gradient in a temporally varying system. Our results showed that the bacterioplankton community structure shifted along the Cd gradient consistently after a 4-day incubation, although it exhibited some resistance to Cd at low concentration (10 μg liter−1). A process akin to an arms race between temporal variability and Cd exposure was observed, and the temporal variability overwhelmed Cd-induced patterns in the bacterial community. The temporal succession of the bacterial community was correlated with pH, dissolved oxygen, NO3−-N, NO2−-N, PO43−-P, dissolved organic carbon, and chlorophylla, and each of these parameters contributed more to community variance than Cd did. However, elevated Cd levels did decrease the temporal turnover rate of community. Furthermore, key taxa, affiliated to the familiesFlavobacteriaceae,Rhodobacteraceae,Erythrobacteraceae,Piscirickettsiaceae, andAlteromonadaceae, showed a high frequency of being associated with Cd levels during 2 weeks. This study provides direct evidence that specific Cd-induced patterns in bacterioplankton communities exist in highly varying manipulated coastal systems. Future investigations on an ecosystem scale across longer temporal scales are needed to validate the observed pattern.


2007 ◽  
Vol 74 (2) ◽  
pp. 503-515 ◽  
Author(s):  
L. Riemann ◽  
C. Leitet ◽  
T. Pommier ◽  
K. Simu ◽  
K. Holmfeldt ◽  
...  

ABSTRACT The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.


2020 ◽  
Vol 85 ◽  
pp. 183-196
Author(s):  
Y Sun ◽  
J Liu ◽  
Q Yao ◽  
J Jin ◽  
X Liu ◽  
...  

Viruses are the most abundant and ubiquitous biological entities in various ecosystems, yet few investigations of viral communities in wetlands have been performed. To address this data gap, water samples from 6 wetlands were randomly collected across northeast China; viruses in the water were concentrated by sequential tangential flow filtration, and viral communities were assessed through randomly amplified polymorphic DNA-PCR (RAPD-PCR) with 4 decamer oligonucleotide primers. Principal coordinate analysis and hierarchical clustering analysis of the DNA fingerprints showed that viral community compositions differed among the water samples: communities in the 2 coastal wetlands were more similar to each other than to those in the 4 freshwater wetlands. The Shannon-Weaver index (H) and evenness index (E) of the RAPD-PCR fingerprint also differed among the 6 wetlands. Mantel test revealed that the changes in viral communities in wetland water were most closely related to the water NH4+-N and inorganic C content, followed by total K, P, C and NO3--N. DNA sequence analysis of the excised bands revealed that viruses accounted for ~40% of all sequences. Among the hit viral homologs, the majority belonged to the Microviridae. Moreover, variance partitioning analysis showed that the viral community contributed 24.58% while environmental factors explained 30.56% of the bacterial community variation, indicating that the bacterial community composition was strongly affected by both viral community and water variables. This work provides an initial outline of the viral communities from different types of wetlands in northeast China and improves our understanding of the viral diversity in these ecosystems.


2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

1996 ◽  
Vol 10 ◽  
pp. 255-263 ◽  
Author(s):  
J Pernthaler ◽  
B Sattler ◽  
K Simek ◽  
A Schwarzenbacher ◽  
R Psenner

Sign in / Sign up

Export Citation Format

Share Document