Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary

2014 ◽  
Vol 30 (6) ◽  
pp. 1879-1892 ◽  
Author(s):  
Mónika Fazekas ◽  
Anett Madar ◽  
Matthias Sipiczki ◽  
Ida Miklós ◽  
Imre J. Holb
Author(s):  
I. J. Holb

In this paper, important features of symptoms, biology and biological disease management are summarised for brown rot blossom blight fungi of pome and stone fruit crops (Monilinia laxa, Monilinia fructicola and Monilinia mali). Firstly, European brown rot caused by Monilinia laxa is discussed highlighting the blossom epidemiology features, then host susceptibility of the most important stone fruit species including several Hungarian and international cultivars. At the end of this chapter, recent biological control possibilities against Monilinia laxa are also included. Secondly, American brown rot caused by Monilinia fructicola is discussed. Symptoms, biological features of blossom blight and host susceptibility of flowers to Monilinia fructicola are demonstrated. Finally, the symptoms and the biology of the least frequent species, Monilinia mali are shown.


2019 ◽  
Vol 68 (7) ◽  
pp. 1381-1393 ◽  
Author(s):  
N. Baró‐Montel ◽  
N. Vall‐llaura ◽  
J. Usall ◽  
N. Teixidó ◽  
M. A. Naranjo‐Ortíz ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (5) ◽  
pp. 709-717 ◽  
Author(s):  
Jovana Hrustić ◽  
Goran Delibašić ◽  
Ivana Stanković ◽  
Mila Grahovac ◽  
Branka Krstić ◽  
...  

Brown rot is one of the most important pre- and postharvest fungal diseases of stone fruit worldwide. In Serbia, where production of stone fruit is economically important, Monilinia laxa and M. fructigena are widely distributed. In surveys from 2011 to 2013, 288 isolates of Monilinia spp. were collected from 131 localities in 16 districts and from six hosts in Serbia. Using multiplex polymerase chain reaction, phylogenetic analysis, and morphological characterization, three species of Monilinia were identified as the causal agents of brown rot of stone fruit: M. laxa (89% of isolates), M. fructigena (3%), and M. fructicola (8%). In 2011, M. fructicola was reported for the first time on stone fruit in Serbia, with only one isolate detected. More isolates of M. fructicola were detected in 2012 (2 isolates) and 2013 (20 isolates). The presence of M. fructicola, as well as its increased frequency of detection during the survey, may indicate a change in the population structure of these pathogens, which could have an important impact on brown rot disease management in Serbia.


2012 ◽  
Vol 45 (17) ◽  
pp. 2076-2086 ◽  
Author(s):  
Abdollah Ahmadpour ◽  
Youbert Ghosta ◽  
Mohammad Javan-Nikkhah ◽  
Keyvan Ghazanfari ◽  
Reza Fatahi

1985 ◽  
Author(s):  
Amnon Erez ◽  
M.W. Williams ◽  
Yosef Ben-Tal ◽  
B. Avidan ◽  
E.A. Curry ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 433c-433 ◽  
Author(s):  
Philip L. Forsline ◽  
E.E Dickson ◽  
A.D. Djangaliev

The USDA National Plant Germplasm System (NPGS) sponsored a 1993 collection of wild Malus in Kazakhstan and Kyrgyzstan which followed a collection in 1989 from sites in Tajikistan and Uzbekistan. There is strong evidence that the domestic apple originated in the foothills of the Tian Shari mountains where Malus sieversii (Ldb.) M. Roem remains as a primary forest species. The goal of the recent expedition was to obtain additional genetic diversity of apple from some of the remote sites in that area with the assistance of the Kazakh hosts. While there, isolated pockets of other fruit in the wild (especially Vitis) were discovered and collected. Seed collections from the expedition are stored with the NPGS and seedling populations are being evaluated for valuable traits.


Plant Disease ◽  
2011 ◽  
Vol 95 (12) ◽  
pp. 1584-1584 ◽  
Author(s):  
K. D. Cox ◽  
S. M. Villani ◽  
J. J. Raes ◽  
J. Freier ◽  
H. Faubert ◽  
...  

In the eastern United States, Monilinia laxa (Aderh. & Ruhl.) Honey has only been reported on tart cherry in New York (NY) (1). As a result of considerable rain in May of 2009 and 2011, an ornamental planting of Kwanzan cherries in Middletown, Rhode Island (RI), a planting of sweet cherry cvs. Ulster, Hedelfingen, Sam, and Lapins in Lanesboro, Massachusetts (MA), and plantings of apricot cvs. Harcot and Hargrande in Albion, Aurora, and Geneva, NY, and Harogem in Lanesboro, MA developed severe shoot blight (>15 to 100% of first-year shoots). Blighted shoots were wilted with the blight encompassing the distal end and often extending into second-year tissue with a distinct sunken margin. Leaves on symptomatic shoots had flushed, but were blighted and light brown. Blossom spurs were often blighted and gummosis was frequently observed at the base. In these same years, sweet cherry cv. Black Gold in Walworth, NY and plum cv. Stanley in Olcott, NY developed severe fruit rot (35 to 70% incidence). Plantings suffering from fruit rot had fruit lesions that began as pale brown, soft lesions with indiscriminant margins that covered 15 to 85% of the fruit surface area. Many blighted spurs, shoot tissues, and infected fruit were sporulating with tan-to-buff colored conidia produced in chains. From each planting with shoot blight, shoot tips were removed for pathogen isolation. Sections of symptomatic shoots (5 cm long) were surface sterilized in 0.6% NaOCl for 1 min and rinsed in sterile dH20. From plantings displaying blighted spurs or fruit rot, isolation was attempted directly from sporulating tissue. Cross sections of sterilized shoot tissue (3 mm thick) or tufts of sporulation from fruit and spurs were placed on potato dextrose agar amended with 50 μg/ml of streptomycin sulfate. After incubation at 24°C for 5 days, colonies with lobed margins, commonly described for M. laxa (4), were obtained. Several colonies resembling M. fructicola were isolated from all locations, but the majority of isolates from spurs and shoots resembled M. laxa. Conidia from both colony morphotypes were lemon shaped, but as expected, those from putative M. laxa isolates were smaller (10.75 × 12.0 μm) compared with those from putative M. fructicola isolates (15.75 × 18.25 μm) (4). Confirmation of M. laxa was further achieved by PCR amplification of the β-tubulin gene using M. laxa-specific primers as previously described (3). Pathogenicity of M. laxa isolates was proven by inoculating fruit of the stone fruit crop from which they were isolated as previously described (2). Fruit inoculated with M. laxa developed brown, soft sporulating lesions identical to the original observations, while those inoculated with water remained healthy. M. laxa was reisolated from symptomatic shoots and spurs, but not from water-inoculated tissues. The presence of M. laxa has been reported on tart cherries in NY (1), but to our knowledge, this is the first instance of economically devastating shoot blight on apricot in NY and MA, ornamental cherry in RI, and sweet cherry in MA and fruit rot on sweet cherry and plum in NY caused by M. laxa. In wet seasons, stone fruit growers may need to revise their chemical management programs to better prepare for M. laxa epidemics on several stone fruit species. References: (1) K. D. Cox and S. M. Villani. Plant Dis. 94:783, 2010. (2) K. D. Cox and S. M. Villani. Plant Dis. 95:828, 2011. (3) Z. Ma et al. Pest Manag. Sci. 61:449, 2005. J.M. (4) G. C. M. van Leeuwen and H. A. van Kesteren. Can. J. Bot. 76:2042, 1998.


Sign in / Sign up

Export Citation Format

Share Document