Citricoccus zhacaiensis B-4 (MTCC 12119) a novel osmotolerant plant growth promoting actinobacterium enhances onion (Allium cepa L.) seed germination under osmotic stress conditions

2015 ◽  
Vol 31 (5) ◽  
pp. 833-839 ◽  
Author(s):  
Govindan Selvakumar ◽  
Ravindra M. Bhatt ◽  
Kaushal K. Upreti ◽  
Gurupadam Hema Bindu ◽  
Kademani Shweta
2018 ◽  
Vol 20 (1) ◽  
pp. 9
Author(s):  
Ryan Hilda Wandita ◽  
Sri Pujiyanto ◽  
Agung Suprihadi ◽  
Ratih Dewi Hastuti

Onions (Allium cepa L.) is one of the leading horticultural commodities in Indonesia and is often used as seasoning and traditional medicine. Onion has a high economic value and fluctuating prices so that domestic onion production needs to be improved, one of them with a presence of endophytic bacteria that act as plant growth promoting agent or Plant Growth Promoting Bacteria (PGPB). Endophytic bacteria isolated from the root, leaves, and bulbs. In this research has been tested endophytic bacteria of onion plants from Garut regency which has PGPB factors such as able to dissolve phosphate, and produce HCN. The results obtained 251 isolates of endophytic bacteria. Based on the characterization results, the superior isolates capable of dissolving phosphate with an average diameter of 0.45 cm is isolate II.B.1D.3, and 11 isolates capable of producing high HCN. These isolates can be used as PGPB agents so that they can be useful in increasing plant growth and onion production and biocontrol in suppressing pathogens. Keywords: PGPB, endophyte, onion, phosphate, HCN


Proceedings ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 20
Author(s):  
Marika Pellegrini ◽  
Daniela M. Spera ◽  
Claudia Ercole ◽  
Maddalena del Gallo

The present work was aimed at investigating the effects of a four strains consortium—Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria—on crops of Allium cepa L. and its soil health. The bacterial consortium was inoculated on seeds of two different onion varieties; inoculated seeds and control ones (treated with autoclaved inoculum) were sown in open-field and followed until harvest. Plant growth development parameters, as well as soil physico-chemical and molecular profiles (DNA extraction and 16S community sequencing on the Mi-Seq Illumina platform), were investigated. The results showed a positive influence of bacterial application on plant growth, with increased plant height (+18%), total chlorophylls (+42%), crop yields (+13%), and bulbs dry matter (+3%) than the control. The differences between control and treated experimental conditions were also underlined in the bulb extracts in terms of total phenolic contents (+25%) and antioxidant activities (+20%). Soil fertility and microbial community structure and diversity were also positively affected by the bacterial inoculum. At harvest, the soil with the presence of the bacterial consortium showed an increase of total organic carbon, organic matter, and available P and higher concentrations of nutrients than control. The ecological indexes calculated on the molecular profiles showed that community diversity was positively affected by the bacterial treatment. The present work allowed to remark the effective use of plant growth-promoting bacteria as a valid fertilization strategy to improve yield in productive landscapes, whilst safeguarding soil biodiversity.


2021 ◽  
Vol 9 (3) ◽  
pp. 639
Author(s):  
Marika Pellegrini ◽  
Daniela M. Spera ◽  
Claudia Ercole ◽  
Maddalena Del Gallo

The present work was aimed at investigating the effects of a four bacterial strain consortium—Azospirillum brasilense, Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, and Burkholderia ambifaria—on Allium cepa L. and on soil health. The bacterial consortium was inoculated on seeds of two different onion varieties; inoculated and Control seeds (treated with autoclaved inoculum) were sown in an open-field and followed until harvest. Plant growth development parameters, as well as soil physico–chemical and molecular profiles (DNA extraction and 16S community sequencing on the Mi-Seq Illumina platform), were investigated. The results showed a positive influence of bacterial application on plant growth, with increased plant height (+18%), total chlorophylls (+42%), crop yields (+13%), and bulb dry matter (+3%) with respect to the Control. The differences between Control and treatments were also underlined in the bulb extracts in terms of total phenolic contents (+25%) and antioxidant activities (+20%). Soil fertility and microbial community structure and diversity were also positively affected by the bacterial inoculum. At harvest, the soil with the presence of the bacterial consortium showed an increase in total organic carbon, organic matter, and available phosphorus, as well as higher concentrations of nutrients than the Control. The ecological indexes calculated from the molecular profiles showed that community diversity was positively affected by the bacterial treatment. The present work showed the effective use of plant growth-promoting bacteria as a valid fertilization strategy to improve yield in productive landscapes whilst safeguarding soil biodiversity.


Vegetalika ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 512
Author(s):  
Nanda Dwi Hafri ◽  
Endang Sulistyaningsih ◽  
Arif Wibowo

Salah satu upaya penanganan penyakit moler bawang merah dilakukan melalui aplikasi Trichoderma. Aplikasi Trichoderma pada bawang merah memiliki beberapa keunggulan, yaitu mampu mensintesis hormon pertumbuhan tanaman. Terdapat jenis mikroba lain yang juga mampu meningkatkan fitohormon pada tanaman, yaitu Plant Growth Promoting Rhizobacteria (PGPR). Tujuan dari penelitian ini adalah untuk mengetahui dan menentukan isolat PGPR yang memiliki pengaruh paling baik terhadap pertumbuhan dan hasil bawang merah varietas Crok Kuning di lahan sawah. Penelitian ini menggunakan Rancangan Acak Kelompok Lengkap (RAKL) faktor tunggal dengan tiga blok sebagai ulangan. Faktor perlakuan yang digunakan adalah lima isolat PGPR, yaitu: Bp.25.7 Bacillus subtilis, BrSG.5 Bacillus amyloliquofaciens, Bp.25.2 Bacillus methylotrophicus, BrsM.4 Burkholderia cepacia, danBp.25.6 Bacillus amyloliquofaciens dengan dua kontrol, yaitu kontrol positif berupa Trichoderma dan kontrol negatif tanpa aplikasi perlakuan. Hasil penelitian menunjukkan bahwa pemberian perlakuan isolat Bp.25.2 Bacillus methylotrophicus pada bawang merah menyebabkan Laju Asimilasi Bersih (LAB) bawang merah lebih tinggi dibandingkan dengan pemberian perlakuan empat isolat PGPR lainnya maupun kontrol, tetapi sama baiknya dengan pemberian perlakuan Trichoderma. LAB yang tinggi menyebabkan Laju Pertumbuhan Tanaman (LPT) bawang merah dengan pemberian perlakuan Bp.25.2 Bacillus methylotrophicus yang lebih tinggi dibandingkan dengan BrSG.5 Bacillus amyloliquofaciens dan Bp.25.6 Bacillus amyloliquofaciens, tetapi sama baiknya dengan pemberian perlakuan dua isolat PGPR lainnya, kontrol, maupun Trichoderma. Pemberian aplikasi lima isolat PGPR sama baiknya dengan aplikasi Trichoderma dalam meningkatkan pertumbuhan tanaman bawang merah pada variabel luas permukaan daun dan bobot kering total dibandingkan kontrol. Peningkatan variabel pertumbuhan ini tidak diikuti oleh peningkatan variabel hasil dan produktivitas bawang merah tidak berbeda nyata antar perlakuan.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


2010 ◽  
Vol 192 (10) ◽  
pp. 867-876 ◽  
Author(s):  
V. Sandhya ◽  
Sk. Z. Ali ◽  
B. Venkateswarlu ◽  
Gopal Reddy ◽  
Minakshi Grover

Sign in / Sign up

Export Citation Format

Share Document