A Low Power Minimal Error IEEE 802.15.4 Transceiver for Heart Monitoring in IoT Applications

2018 ◽  
Vol 100 (2) ◽  
pp. 611-629 ◽  
Author(s):  
V. Subrahmanyam ◽  
Mohammed Abdullah Zubair ◽  
Ajay Kumar ◽  
P. Rajalakshmi
2019 ◽  
Vol 6 (2) ◽  
pp. 3437-3447 ◽  
Author(s):  
Abdullah Zubair Mohammed ◽  
Ajay Kumar Nain ◽  
Jagadish Bandaru ◽  
Ajay Kumar ◽  
D. Santhosh Reddy ◽  
...  

Author(s):  
Alireza Zolfaghari ◽  
Mohamed El Said ◽  
Michael Youssef ◽  
Gang Zhang ◽  
Tom Tong Liu ◽  
...  

2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Author(s):  
Mohamed El-Hadedy ◽  
Martin Margala ◽  
Sergiu Mosanu ◽  
Danilo Gligoroski ◽  
Jinjun Xiong ◽  
...  

Author(s):  
Sajad Nejadhasan ◽  
Fatemeh Zaheri ◽  
Ebrahim Abiri ◽  
Mohammad Reza Salehi

2007 ◽  
Vol 55 (4) ◽  
pp. 682-689 ◽  
Author(s):  
Ilku Nam ◽  
Kyudon Choi ◽  
Joonhee Lee ◽  
Hyouk-Kyu Cha ◽  
Bo-Ik Seo ◽  
...  

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


2020 ◽  
Vol 16 (3) ◽  
pp. 254-259
Author(s):  
Yehia R. Hamdy ◽  
Ahmed I Alghannam

ZigBee is widely used in wireless network in Internet of Things (IoT) applications to remotely sensing and automation due to its unique characteristics compared to other wireless networks. According to ZigBee classification of IEEE 802.15.4 standard, the network consists of four layers. The ZigBee topology is represented in second layer. Furthermore, the ZigBee topology consists of three topologies, star, tree and mesh. Also there are many transmission bands allowed in physical layer, such as 2.4 GHz, 915 MHz, 868 MHz. The aim of this paper is to evaluate the effect of ZigBee topologies on End to End delay and throughput for different transmission bands. Riverbed Modeler is used to simulate multiple ZigBee proposed scenarios and collect the results. The results of the study recommend which topology should be used at each transmission band to provide lowest End to End delay or obtain maximum throughput, which is case sensitive in some IoT applications that required for example minimum delay time or sending high amount of data.


Sign in / Sign up

Export Citation Format

Share Document