Genetic diversity and structure of western white pine (Pinus monticola) in North America: a baseline study for conservation, restoration, and addressing impacts of climate change

2010 ◽  
Vol 7 (1) ◽  
pp. 11-21 ◽  
Author(s):  
Mee-Sook Kim ◽  
Bryce A. Richardson ◽  
Geral I. McDonald ◽  
Ned B. Klopfenstein
2000 ◽  
Vol 10 (3) ◽  
pp. 523-527 ◽  
Author(s):  
John A. Muir ◽  
Richard S. Hunt

Introductions of white pine blister rust (WPBR, causal fungus: Cronartium ribicola J.C. Fischer) to eastern and western North America before 1915 caused such extensive damage that western white pine (Pinus monticola D. Don) was essentially abandoned as a manageable forest tree species for over 60 years. Recent results from WPBR resistance selection and breeding programs, and from field trials of tree spacing, pruning and bark excision treatments have supported efforts to increase establishment and to intensively manage western white pine. Western white pine is a desirable component in many forested areas because of its faster growth and much higher value compared to many other associated tree species. It also has a low susceptibility to armillaria root disease caused by Armillaria ostoyae (Romagnesi) Herink and laminated root rot, caused by Phellinus weirii (Murr.) Gilb. Some regulations, e.g., Forest Practices Code of British Columbia (BC) Act, require anyone who harvests timber on provincial forestland and uses western white pine for reforestation to either plant genetically resistant western white pine stock or prune susceptible young trees for protection. Risks of increased WPBR associated with increased commercial cultivation of gooseberries and currants (Ribes L.) have yet to be determined. However, major threats appear to include 1) increase in local amounts of spores for nearby infection of pines; and 2) possible introductions or development of new, virulent races of C. ribicola, particularly from eastern to Pacific northwestern North America. In view of these possible threats, we recommend that existing regulations and legislation should be amended, or possibly new measures enacted, to permit propagation and commercial cultivation only of varieties of Ribes that are immune or highly resistant to WPBR.


2002 ◽  
Vol 32 (7) ◽  
pp. 1109-1125 ◽  
Author(s):  
Theresa B Jain ◽  
Russell T Graham ◽  
Penelope Morgan

Many studies have assessed tree development beneath canopies in forest ecosystems, but results are seldom placed within the context of broad-scale biophysical factors. Mapped landscape characteristics for three watersheds, located within the Coeur d'Alene River basin in northern Idaho, were integrated to create a spatial hierarchy reflecting biophysical factors that influence western white pine (Pinus monticola Dougl. ex D. Don) development under a range of canopy openings. The hierarchy included canopy opening, landtype, geological feature, and weathering. Interactions and individual-scale contributions were identified using stepwise log–linear regression. The resulting models explained 68% of the variation for estimating western white pine basal diameter and 64% for estimating height. Interactions among spatial scales explained up to 13% of this variation and better described vegetation response than any single spatial scale. A hierarchical approach based on biophysical attributes is an excellent method for studying plant and environment interactions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245965
Author(s):  
Catherine Kiwuka ◽  
Eva Goudsmit ◽  
Rémi Tournebize ◽  
Sinara Oliveira de Aquino ◽  
Jacob C. Douma ◽  
...  

Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected. We used 19 microsatellite (SSR) markers to assess genetic diversity and structure of this material as well as material from two ex-situ collections and a feral population. The Ugandan C. canephora diversity was then positioned relative to the species’ global diversity structure. Twenty-two climatic variables were used to explore variations in climatic zones across the sampled forests. Overall, Uganda’s native C. canephora diversity differs from other known genetic groups of this species. In northwestern (NW) Uganda, four distinct genetic clusters were distinguished being from Zoka, Budongo, Itwara and Kibale forests A large southern-central (SC) cluster included Malabigambo, Mabira, and Kalangala forest accessions, as well as feral and cultivated accessions, suggesting similarity in genetic origin and strong gene flow between wild and cultivated compartments. We also confirmed the introduction of Congolese varieties into the SC region where most Robusta coffee production takes place. Identified populations occurred in divergent environmental conditions and 12 environmental variables significantly explained 16.3% of the total allelic variation across populations. The substantial genetic variation within and between Ugandan populations with different climatic envelopes might contain adaptive diversity to cope with climate change. The accessions that we collected have substantially enriched the diversity hosted in the Ugandan collections and thus contribute to ex situ conservation of this vital genetic resource. However, there is an urgent need to develop strategies to enhance complementary in-situ conservation of Coffea canephora in native forests in northwestern Uganda.


1999 ◽  
Vol 14 (1) ◽  
pp. 41-47 ◽  
Author(s):  
M. D. Meagher ◽  
R. S. Hunt

Abstract Survival, environmental damage, and juvenile height of 27 provenances of western white pine (Pinus monticola) in three plantation series were analyzed after 5 to 13 yr on site to assist in evaluating seed-transfer practices. Survival averaged 79.2% on nine sites in the "root-rot" series and 84.1% on six sites in the "provenance-test" series. Trends of survival on seed-source parameters differed between series, generally increasing with both elevation and latitude in the root-rot series, while generally decreasing with latitude in the provenance-test series. Analysis by seed zone (coast or interior) and plantation region (coast, southern interior, or northern interior) showed that coastal sources on interior sites caused much of these anomalies. Substantial environmental damage was found only on sites near to or beyond the species' northern limit. Differences in the trend of damage with source parameters were found between the test series: interior sources were damaged less than coastal sources on two root-rot sites, whereas interior sources were damaged more heavily than coastal sources on the provenance-test site exhibiting substantial damage. Damage increased with increasing provenance latitude and elevation in the root-rot series, while it dropped with increasing elevation in the "provenance-test" series. In general, taller seedlings in taller provenances were damaged. Coastal seed should not be used on interior sites, but transfer of seed from the BC interior to the BC coast seems safe. We recommend that the present limits for latitudinal transfer be doubled, except where late-spring-frost risk is high, and that elevational transfer of seeds for the interior zone be reduced by about half West. J. Appl. For. 14(1)41-47.


1985 ◽  
Vol 61 (6) ◽  
pp. 484-488 ◽  
Author(s):  
R. S. Hunt ◽  
J. F. Manville ◽  
E. von Rudloff ◽  
M. S. Lapp

Cluster analyses of relative terpene abundance in foliage of western white pine (Pinus monticola Dougl.) trees from throughout the Pacific Northwest geographic range of the species were produced. Terpene patterns were randomly distributed among populations; no geographic or site trends were evident. Although blister rust is devastating to stands, the gene pool is widely distributed and may well be preserved without establishing gene banks.About 40-50 trees selected at random would yield offspring with nearly all possible terpene patterns characteristic of the species and would thus constitute a broad genetic base. Therefore seed orchards do not necessarily need to be composed of many individuals, rather, they should contain highly selected individuals with multiple desirable traits including multiple blister rust resistance mechanisms. Key words: terpenes, dendrogram


2012 ◽  
Vol 117 (1-2) ◽  
pp. 319-327 ◽  
Author(s):  
Sylvain Dubey ◽  
David A. Pike ◽  
Richard Shine

Sign in / Sign up

Export Citation Format

Share Document