Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers

2018 ◽  
Vol 15 (1) ◽  
Author(s):  
Nurlan Torokeldiev ◽  
M. Ziehe ◽  
O. Gailing ◽  
R. Finkeldey
PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0208021 ◽  
Author(s):  
Anthony Bernard ◽  
Teresa Barreneche ◽  
Fabrice Lheureux ◽  
Elisabeth Dirlewanger

2021 ◽  
Author(s):  
Varun Hiremath ◽  
Kanwar Pal Singh ◽  
Neelu Jain ◽  
Kishan Swaroop ◽  
Pradeep Kumar Jain ◽  
...  

Abstract Genetic diversity and structure analysis using molecular markers is necessary for efficient utilization and sustainable management of gladiolus germplasm. Genetic analysis of gladiolus germplasm using SSR markers is largely missing due to scarce genomic information. In the present investigation, we report 66.66% cross transferability of Gladiolus palustris SSRs whereas 48% of Iris EST-SSRs were cross transferable across the gladiolus genotypes used in the study. A total of 17 highly polymorphic SSRs revealed a total 58 polymorphic loci ranging from two to six in each locus with an average of 3.41 alleles per marker. PIC values ranged from 0.11 to 0.71 with an average value of 0.48. Four SSRs were selectively neutral based on Ewens-Watterson test. Analysis of genetic structure of 84 gladiolus genotypes divided whole germplasm into two subpopulations. 35 genotypes were assigned to subpopulation 1 whereas 37 to subpopulation 2 and rest of the genotypes recorded as admixture. Analysis of molecular variance indicated maximum variance (53.59%) among individuals within subpopulations whereas 36.55% of variation observed among individuals within total population. Least variation (9.86%) was noticed between two subpopulations. Moderate (FST = 0.10) genetic differentiation of two subpopulations was observed. Grouping pattern of population structure was consistent with UPGMA dendrogram based on simple matching dissimilarity coefficient (ranged from 01.6 to 0.89) and PCoA. Genetic relationships assessed among the genotypes of respective clusters assist the breeders in selecting desirable parents for crossing. SSR markers from present study can be utilized for cultivar identification, conservation and sustainable utilization of gladiolus genotypes for crop improvement.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8038
Author(s):  
Yanli Xiong ◽  
Wenhui Liu ◽  
Yi Xiong ◽  
Qingqing Yu ◽  
Xiao Ma ◽  
...  

Hosting unique and important plant germplasms, the Qinghai-Tibet Plateau (QTP), as the third pole of the world, and Xinjiang, located in the centre of the Eurasian continent, are major distribution areas of perennial Triticeae grasses, especially the widespread Elymus species. Elymus excelsus Turcz. ex Griseb, a perennial forage grass with strong tolerance to environmental stresses, such as drought, cold and soil impoverishment, can be appropriately used for grassland establishment due to its high seed production. To provide basic information for collection, breeding strategies and utilization of E. excelsus germplasm, microsatellite markers (SSR) were employed in the present study to determine the genetic variation and population structure of 25 wild accessions of E. excelsus from Xinjiang (XJC) and the QTP, including Sichuan (SCC) and Gansu (GSC) of western China. Based on the 159 polymorphic bands amplified by 35 primer pairs developed from three related species, the average values of the polymorphic information content (PIC), marker index (MI), resolving power (Rp), Nei’s genetic diversity (H) and Shannon’s diversity index (I) of each pair of primers were 0.289, 1.348, 1.897, 0.301 and 0.459, respectively, validating that these SSR markers can also be used for the evaluation of genetic diversity of E. excelsus germplasms, and demonstrating the superior versatility of EST-SSR vs. G-SSR. We found a relatively moderate differentiation (Fst = 0.151) among the XJC, SCC and GSC geo-groups, and it is worth noting that, the intra-group genetic diversity of the SCC group (He = 0.197) was greater than that of the GSC (He = 0.176) and XJC (He = 0.148) groups. Both the Unweighted Pair Group Method with Arithmetic (UPGMA) clustering and principal coordinates analysis (PCoA) divided the 25 accessions into three groups, whereas the Bayesian STRUCTURE analysis suggested that E. excelsus accessions fell into four main clusters. Besides, this study suggested that geographical distance and environmental variables (annual mean precipitation and average precipitation in growing seasons), especially for QTP accessions, should be combined to explain the population genetic differentiation among the divergent geographical regions. These data provided comprehensive information about these valuable E. excelsus germplasm resources for the protection and collection of germplasms and for breeding strategies in areas of Xinjiang and QTP in western China.


2020 ◽  
Vol 6 (2) ◽  
pp. 61-70 ◽  
Author(s):  
Rim Ouni ◽  
Anna Zborowska ◽  
Jasna Sehic ◽  
Sarra Choulak ◽  
J. Iñaki Hormaza ◽  
...  

Rice Science ◽  
2010 ◽  
Vol 17 (4) ◽  
pp. 257-268 ◽  
Author(s):  
Ming HUANG ◽  
Fang-min XIE ◽  
Li-yun CHEN ◽  
Xiang-qian ZHAO ◽  
L. JOJEE ◽  
...  

Aquaculture ◽  
2012 ◽  
Vol 358-359 ◽  
pp. 139-145 ◽  
Author(s):  
Fuli Liu ◽  
Jianting Yao ◽  
Xiuliang Wang ◽  
Anna Repnikova ◽  
Dmitry A. Galanin ◽  
...  

2020 ◽  
Vol 32 (1) ◽  
pp. 37-46
Author(s):  
Emine Orhan ◽  
Sadiye Peral Eyduran ◽  
Danijela Poljuha ◽  
Meleksen Akin ◽  
Tim Weber ◽  
...  

AbstractContinuous seed propagation in Turkey has given rise to a great number of seedling walnut trees which represents valuable walnut genetic resources. The number of native walnut trees is estimated to be over 5 million in Turkey and they possess large phenotypic variability in yield, nut and kernel characteristics, late bud breaking, late flowering, winter hardiness and tolerance to diseases. Progress in walnut breeding requires the exploitation of genetic variation among cultivars and landraces. In this study, we used 32 local diverse walnut genotypes obtained from seeds and 2 standard cultivars (‘Sebin’ and ‘Bilecik’). This study implemented 21 previously used simple sequence repeats (SSR) markers to determine genetic diversity. The analysis revealed 135 alleles with an average of 6.43 alleles per locus. Genetic similarity ranged from 0.23 (for samples KW22 and KW29) to 0.87 (for samples KW27 and KW28). The highest number of alleles per locus was obtained from WGA276 locus (11 alleles), followed by WGA054 (9 alleles), WGA202 and WGA321 (8 alleles) while the lowest number was detected in WGA027. According to the morphological and molecular data, the genotypes differed from each other and the cvs. Sebin and Bilecik. The majority of the genotypes had higher fruit weight and some of the genotypes had higher kernel ratio than cvs. Sebin and Bilecik implying the importance of registering genotypes as cultivars. This research provides information on the genetic relationship of walnut genotypes and cultivars and emphasises the importance of protection and utilisation of seed-propagated walnut genetic resources.


2020 ◽  
Vol 49 (4) ◽  
pp. 1003-1012
Author(s):  
Rafiq Ahmad Shah ◽  
Parshant Baksi ◽  
Amit Jasrotia ◽  
Deep JI Bhat ◽  
Rucku Gupta ◽  
...  

screening of 25 SSR markers, revealed 23 clear and consistent amplification profiles in the entire walnut germplasm set. A total of 54 alleles were amplified by SSR primers and the number of alleles range from 2 to 3. The PIC value ranged from 0.36 to 0.68. The dendrogram classified all genotypes into two main clusters with various degrees of subclustering. Estimated genetic dissimilarity coefficient ranged from 0.36 to 0.85. Through model-based cluster analysis all genotypes were grouped into 5 genetically distinct subpopulations. The expected heterozygosity at a given locus was found to range from 0.520 to 0.5477. Similarly, population differentiation measurements (Fst) ranged from 0.2286 to 0.2909. These findings would be helpful for decision making in future walnut breeding studies, germplasm management activities to maximize genetic diversity in walnut germplasm and may also prove useful in future for conducting association mapping in walnut for different traits.


Sign in / Sign up

Export Citation Format

Share Document