scholarly journals Occurrence of 25 pharmaceuticals in Taihu Lake and their removal from two urban drinking water treatment plants and a constructed wetland

2017 ◽  
Vol 24 (17) ◽  
pp. 14889-14902 ◽  
Author(s):  
Xia-Lin Hu ◽  
Yi-Fan Bao ◽  
Jun-Jian Hu ◽  
You-Yu Liu ◽  
Da-Qiang Yin

Abstract Pharmaceuticals in drinking water sources have raised significant concerns due to their persistent input and potential human health risks. The seasonal occurrence of 25 pharmaceuticals including 23 antibiotics, paracetamol (PAR), and carbamazepine (CMZ) in Taihu Lake was investigated; meanwhile, the distribution and removal of these pharmaceuticals in two drinking water treatment plants (DWTPs) and a constructed wetland were evaluated. A high detection frequency (>70%) in the Taihu Lake was observed for nearly all the 25 pharmaceutics. Chlortetracycline (234.7 ng L−1), chloramphenicol (27.1 ng L−1), erythromycin (72.6 ng L−1), PAR (71.7 ng L−1), and CMZP (23.6 ng L−1) are compounds with both a high detection frequency (100%) and the highest concentrations, suggesting their wide use in the Taihu Basin. Higher concentrations of chloramphenicols, macrolides, PAR, and CMZP were observed in dry season than in wet season, probably due to the low flow conditions of the lake in winter and the properties of pharmaceuticals. The overall contamination levels of antibiotic pharmaceutics (0.2–74.9 ng L−1) in the Taihu Lake were lower than or comparable to those reported worldwide. However, for nonantibiotic pharmaceutics, PAR (45.0 ng L−1) and CMZP (14.5 ng L−1), significantly higher concentrations were observed in the Taihu Lake than at a global scale. High detection frequencies of 25 pharmaceuticals were observed in both the two DWTPs (100%) and the wetland (>60%) except for florfenicol and sulfapyridine. The removal efficacies of the studied pharmaceuticals in DWTP B with advanced treatment processes including ozonation and granular activated carbon filtration (16.7–100%) were superior to DWTP A with conventional treatment processes (2.9–100%), except for sulfonamides. Wetland C with the constructed root channel technology was efficient (24.2–100%) for removing most pharmaceuticals. This work suggests that the application of cost-effective technologies such as constructed wetlands should be considered as an efficient alternative for removing pharmaceuticals from water supply sources.

Author(s):  
Zhiquan Liu ◽  
Yongpeng Xu ◽  
Yuan Wang ◽  
Fuyi Cui

Abstract Quinolone (QN) antibiotics are widely used all over the world and have been frequently detected in source water, but the occurrence in tap water and the treatment efficiencies of QNs by drinking-water treatment plants (DWTPs) were rarely reported. In the present study, the occurrence and distribution of six representative QNs in three urban DWTPs of China were investigated. The results showed that the concentrations of total QNs in the three source waters ranged from 26.4 ng/L to 313.8 ng/L and all of the six QNs were detectable with a detection frequency of 100% (4.6 to 121.7 ng/L). Enrofloxacin (ENR) and ofloxacin (OFL) were the dominant species of QNs and accounted for 40.1% to 79.5% of the total QNs. After the treatments, there were still considerable QNs in the finished water (total amounts of 74.9 ng/L to 148.4 ng/L). The adsorbed QNs could be readily treated with the removal of turbidity by DWTPs, but only a part of the dissolved QNs (13.6% to 68.5%) can be removed. This implies that the dissolved QNs were more hazardous in the source water. Pre-oxidation and disinfection could remove 15.8 ± 8.3% and 16.9 ± 10.8% of dissolved QNs, respectively, depending on the chemical structure of QNs and the types of oxidant. Chemical oxidation was more efficient than coagulation-sedimentation and filtration for the treatment of dissolved QNs. Ozone-granular activated carbon filtration may fail to remove dissolved QNs in the actual DWTPs, because of the insufficient dosage of oxidant and the competition effect of natural organic matter.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 628
Author(s):  
Keug Tae Kim ◽  
Yong-Gyun Park

Due to climate change, population growth, industrialization, urbanization, and water contamination, it is becoming more difficult to secure and supply clean and safe drinking water. One of the challenges many water utilities often face is the taste and odor (T&O) problem in drinking water treatment plants, mostly associated with geosmin and 2-MIB. These representative T&O compounds are mainly produced by the metabolism of blue-green algae (cyanobacteria), especially in summer. In this study, the correlation between algae blooms and T&O compounds was identified in the intake and raw water of a large-scale water treatment plant in the Republic of Korea. The removal efficiency of geosmin and 2-MIB by each treatment process was intensively evaluated. According to the obtained results, ozonation and granular activated carbon (GAC) adsorption were more effective for removing the troublesome compounds compared to other water treatment processes, such as coagulation/flocculation, filtration, and chlorination. Because of their seasonal concentration variation and different removal rates, optimal operation methods need to be developed and implemented for drinking water treatment plants to solve the T&O problems.


2013 ◽  
Vol 777 ◽  
pp. 337-340
Author(s):  
Qiang Zhang ◽  
Bin Liu

The variation of disinfection by-products (DBPs) at several stages of drinking water treatment plants was investigated in two drinking water plants. The results clearly indicate that the low molecular weight total organic carbon (TOC) which has been identified as primary precursor for chlorinated DBPs was difficult to remove by coagulation. Plant A which used conventional coagulation/sedimentation could not decrease the species of trihalomethanes (THMs) and haloacetic acids (HAAs) formation potential. Biological activated carbon (BAC) was applied in Plant B which removed the maximum amount of TOC, while more kinds of microbial products were produced in BAC unit which could be the potential precursors of DBPs. Therefore, the species of DBPs formation potential still increased in the treatment processes of Plant B. Because different components of organic precursors produced different DBPs species, the processes of Plant B could decrease TOC efficiently but the species of THMs and HAAs formation potential.


1986 ◽  
Vol 21 (3) ◽  
pp. 447-459 ◽  
Author(s):  
K.J. Roberts ◽  
R.B. Hunsinger ◽  
A.H. Vajdic

Abstract The Drinking Water Surveillance Program (DWSP), developed by the Ontario Ministry of the Environment, is an assessment project based on standardized analytical and sampling protocol. This program was recently instituted in response to a series of contaminant occurrences in the St. Clair-Detroit River area of Southwestern Ontario. This paper outlines the details and goals of the program and provides information concerning micro-contaminants in drinking water at seven drinking water treatment plants in Southwestern Ontario.


Author(s):  
Samantha Donovan ◽  
Ariel Jasmine Atkinson ◽  
Natalia Fischer ◽  
Amelia E Taylor ◽  
Johann Kieffer ◽  
...  

PolyDiallyldimethyl Ammonium Chloride (PolyDADMAC) is the most commonly used polymer at drinking water treatment plants and has the potential to form nitrosamines, like N-Nitrosodimethylamine (NDMA), if free polymer is present...


2000 ◽  
Vol 46 (6) ◽  
pp. 565-576 ◽  
Author(s):  
Pierre Payment ◽  
Aminata Berte ◽  
Michèle Prévost ◽  
Bruno Ménard ◽  
Benoît Barbeau

A 300-km portion of the Saint Lawrence hydrological basin in the province of Québec (Canada) and 45 water treatment plants were studied. River water used by drinking water treatment plants was analyzed (6-L sample volumes) to determine the level of occurrence of bacterial indicators (total coliforms, fecal coliforms, and Clostridium perfringens) and pathogens (Giardia lamblia, Cryptosporidium, human enteric viruses). Pathogens and bacterial indicators were found at all sites at a wide range of values. Logistic regression analysis revealed significant correlations between the bacterial indicators and the pathogens. Physicochemical and treatment practices data were collected from most water treatment plants and used to estimate the level of removal of pathogens achieved under cold (0°C-4°C) and warm (20°C-25°C) water temperature conditions. The calculated removal values were then used to estimate the annual risk of Giardia infection using mathematical models and to compare the sites. The estimated range of probability of infection ranged from 0.75 to less than 0.0001 for the populations exposed. Given the numerous assumptions made, the model probably overestimated the annual risk, but it provided comparative data of the efficacy of the water treatment plants and thereby contributes to the protection of public health.Key words: public health, drinking water, health risk, pathogen occurrence.


Sign in / Sign up

Export Citation Format

Share Document