Influences of carbon and nitrogen sources and metal ions on the heterotrophic culture of Scenedesmus sp. LX1

2019 ◽  
Vol 26 (13) ◽  
pp. 13381-13389 ◽  
Author(s):  
Yitian He ◽  
Yu Hong ◽  
Xiaoya Liu ◽  
Qing Zhang ◽  
Peirui Liu ◽  
...  
2021 ◽  
Vol 50 (2) ◽  
pp. 395-404
Author(s):  
Faozia Faleha Sadida ◽  
Ma Manchur

A highly cellulolytic actinomycete SR1 was locally isolated from rice straw and provisionally identified as Thermomonospora viridis. Optimum pH, temperature, carbon and nitrogen sources for its cellulase production were 6.5, 35°C, Carboxymethyl cellulase (CMC) and yeast extract, respectively whereas those of cellulase activity were 7.5, 40°C, CMC and peptone respectively. The effects of various metal ions and different reductant and inhibitors on its cellulase activity were investigated. Univalent Ag+ was found to decrease the enzyme activity whereas increased by bivalent Mg2+. Ethylene diamine tetraacetic acid (EDTA) caused remarkable decrease of cellulase activity but β-Mercaptoethanol stimulated its cellulase activity. Bangladesh J. Bot. 50(2): 395-404, 2021 (June)


2018 ◽  
Vol 69 ◽  
pp. 1-11 ◽  
Author(s):  
Willian Daniel Hahn Schneider ◽  
Roselei Claudete Fontana ◽  
Simone Mendonça ◽  
Félix Gonçalves de Siqueira ◽  
Aldo José Pinheiro Dillon ◽  
...  

2012 ◽  
Vol 496 ◽  
pp. 457-460
Author(s):  
Xiang Ping Kong

The growth conditions of a Geobacillus sp. were investigated by single-factor experiments. The strain was strictly aerobic bacterium, and could grow on hydrocarbons as the sole carbon source. The optimum carbon and nitrogen sources were 3.0% sucrose and 0.20% KNO3, respectively. The range of temperature, salinity and pH for the bacterial growth was 35-70 °C, 0-10% NaCl and 5.5-9.5, and good growth was obtained at 35-65 °C, 0.5-8% NaCl and 6.0-9.0, respectively. Particularly, the optimum temperature for the bacterial growth was between 50 °C and 60 °C. The strain had wide adaptability to the extreme conditions, and may be potentially applied to microbial enhanced oil recovery and oil-waste bioremediation technology.


2011 ◽  
Vol 10 (15) ◽  
pp. 2951-2958 ◽  
Author(s):  
Gutieacute rrez Rojas Ivonne ◽  
Beatriz Torres Geraldo Ana ◽  
Moreno Sarmiento Nubia

Sign in / Sign up

Export Citation Format

Share Document