scholarly journals Changes in Phosphorus Fractions and Its Availability Status in Relation to Long Term P Fertilization in Loess Plateau of China

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1818
Author(s):  
Mohsin Mahmood ◽  
Yi Tian ◽  
Qingxia Ma ◽  
Waqas Ahmed ◽  
Sajid Mehmood ◽  
...  

Excessive phosphorus (P) application can alter soil P availability and limit plant growth by compacting soil and fixation of P into different organic and inorganic forms. However, it remains uncertain whether these changes happen after limited fertilization or an excessive rate applied under the winter wheat cropping system. The current study aimed to identify the transformation of P into different organic (Po) and inorganic (Pi) fractions, and their role in the plant P uptake and winter wheat (Triticum aestivum L.) production. A long-term study (12 years) was conducted to assess the changes in soil Pi and Po fractions in response to different P rates (0, 50, 100, 150, and 200 kg P2O5 ha−1) applied to winter wheat. Phosphorus fractions were determined using the Hedley modified Tiessen and Moir fractionation scheme. Our findings demonstrated that different P rates significantly increased the available P, particularly NaHCO3-Pi, in the inorganic P fractions compared to P0 treatment. NaHCO3-Pi showed a strong relationship with grain yield (R2 = 0.91) and P uptake (R2 = 0.80). Grain yield was significantly higher in the P100 treatment, but no significant difference was observed between P100 and P200 treatments. The P200 treatment had a maximum grain P content and plant P uptake. Compared with the P0 treatment, all organic fractions yielded the highest Po with the P rate increase, ranging from 27.3 to 75.6 mg kg−1, 27.2 to 35.6 mg kg−1, and 58.8 to 124 mg kg−1 for NaHCO3-Po, NaOH-Po, and HCl-Po, respectively. Among all Pi fractions, the maximum fraction, known as apatite (HClD-Pi), was found in the P200 treatment with the range of 165 to 245.9 mg kg−1. HClD-Pi accounted for 32% of total P, which can be transformed into the available P form with the passage of time. An increase of 78% in residual P was found under the treatment of P200. The residual P fraction was positively correlated with grain yield, P uptake, and other inorganic fractions. It can be concluded that application of P increases P availability and grain yield with an increase in its application rate, but too much use of P can cause soil pollution and higher fixation of P. Consequently, a balanced application of fertilizer is recommended to reduce its fixation and increase its availability for higher crop yield.

2008 ◽  
Vol 43 (7) ◽  
pp. 893-901 ◽  
Author(s):  
Sidney Netto Parentoni ◽  
Claudio Lopes de Souza Júnior

The objective of this work was to determine the relative importance of phosphorus acquisition efficiency (PAE - plant P uptake per soil available P), and phosphorus internal utilization efficiency (PUTIL - grain yield per P uptake) in the P use efficiency (PUE - grain yield per soil available P), on 28 tropical maize genotypes evaluated at three low P and two high P environments. PAE was almost two times more important than PUTIL to explain the variability observed in PUE, at low P environments, and three times more important at high P environments. These results indicate that maize breeding programs, to increase PUE in these environments, should use selection index with higher weights for PAE than for PUTIL. The correlation between these two traits showed no significance at low or at high P environments, which indicates that selection in one of these traits would not affect the other. The main component of PUTIL was P quotient of utilization (grain yield per grain P) and not the P harvest index (grain P per P uptake). Selection to reduce grain P concentration should increase the quotient of utilization and consequently increase PUTIL.


2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


2018 ◽  
Vol 64 (No. 9) ◽  
pp. 441-447 ◽  
Author(s):  
Jarosch Klaus A ◽  
Santner Jakob ◽  
Parvage Mohammed Masud ◽  
Gerzabek Martin Hubert ◽  
Zehetner Franz ◽  
...  

Soil phosphorus (P) availability was assessed with four different soil P tests on seven soils of the Ultuna long-term field experiment (Sweden). These four soil P tests were (1) P-H<sub>2</sub>O (water extractable P); (2) P-H<sub>2</sub>O<sub>C10</sub> (water extractable P upon 10 consecutive extractions); (3) P-AL (ammonium lactate extractable P) and (4) P-C<sub>DGT</sub> (P desorbable using diffusive gradients in thin films). The suitability of these soil P tests to predict P availability was assessed by correlation with plant P uptake (mean of preceding 11 years) and soil P balancing (input vs. output on plot level for a period of 54 years). The ability to predict these parameters was in the order P-H<sub>2</sub>O<sub>C10</sub> &gt; P-C<sub>DGT</sub> &gt; P-H<sub>2</sub>O &gt; P-AL. Thus, methods considering the P-resupply from the soil solid phase to soil solution performed clearly better than equilibrium-based extractions. Our findings suggest that the P-AL test, commonly used for P-fertilizer recommendations in Sweden, could not predict plant P uptake and the soil P balance in a satisfying way in the analysed soils.


Soil Research ◽  
2020 ◽  
Vol 58 (2) ◽  
pp. 125 ◽  
Author(s):  
Bahareh Bicharanloo ◽  
Milad Bagheri Shirvan ◽  
Claudia Keitel ◽  
Feike A. Dijkstra

Plants allocate their photosynthetic carbon (C) belowground through rhizodeposition, which can be incorporated into microbial biomass and organic matter, but can also be directly shared with arbuscular mycorrhizal fungi (AMF). In this study, we investigated how both rhizodeposition and AMF colonisation are affected by nitrogen (N) and phosphorus (P) availability in soil systems, and in turn, how these C allocation pathways influenced plant P uptake in four different wheat genotypes with variable root traits. Wheat genotypes (249, Suntop, Scout and IAW2013) were grown in pots and labelled continuously during their growth period with 13CO2 to determine rhizodeposition. We applied two levels of N (25 and 100 kg ha–1) and P (10 and 40 kg ha–1) fertiliser. Plant root traits, plant P content, soil available P and N, microbial biomass C and P, and AMF colonisation were examined. We constructed a structural equation model to show how C allocation to rhizodeposition and AMF colonisation depended on P and N availability, and how these pathways affected plant P uptake and grain yield. Wheat genotypes with fine roots (Suntop, Scout and IAW2013) were associated with AMF colonisation for plant P uptake, and the genotype with the largest root biomass (249) provided more C to rhizodeposition. Both rhizodeposition and AMF colonisation increased plant P and grain yield under low P and high N availability respectively, while root biomass and root traits, such as specific root length and proportion of fine roots, determined which C allocation pathway was employed by the plant.


Author(s):  
Fitsum Tesfaye ◽  
Xiaoyu Liu ◽  
Jufeng Zheng ◽  
Kun Cheng ◽  
Rongjun Bian ◽  
...  

AbstractAs one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha−1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.


2015 ◽  
Vol 153 (8) ◽  
pp. 1353-1364 ◽  
Author(s):  
C. Y. ZHENG ◽  
J. CHEN ◽  
Z. W. SONG ◽  
A. X. DENG ◽  
L. N. JIANG ◽  
...  

SUMMARYTen leading varieties of winter wheat released during 1950–2009 in North China were tested in a free-air temperature increase (FATI) facility. The FATI facility mimicked the local air temperature pattern well, with an increase of 1·1 °C in the daily mean temperature. For all the tested varieties, warming caused a significant reduction in the total length of wheat growth period by 5 days and especially in the pre-anthesis period, where it was reduced by 9 days. However, warming increased wheat biomass production and grain yield by 8·4 and 11·4%, respectively, on an average of all the tested varieties. There was no significant difference in the warming-led reduction in the entire growth period among the tested varieties. Interestingly, the warming-led increments in biomass production and grain yield increased along with the variety release year. Significantly higher warming-led increases in post-anthesis biomass production and 1000-grain weight were found in the new varieties compared to the old ones. Meanwhile, a significant improvement in plant productivity was noted due to wheat breeding during the past six decades, while no significant difference in the length of entire growth period was found among the varieties released in different eras. The results demonstrate that historical wheat breeding might have enhanced winter wheat productivity and adaptability through exploiting the positive effects rather than mitigating the negative impacts of warming on wheat growth in North China.


2020 ◽  
Author(s):  
Trung Hieu Mai ◽  
Pieterjan De Bauw ◽  
Andrea Schnepf ◽  
Roel Merckx ◽  
Erik Smolders ◽  
...  

AbstractBackground and aimsUpland rice is often grown where water and phosphorus (P) are limited and these two factors interact on P bioavailability. To better understand this interaction, mechanistic models representing small-scale nutrient gradients and water dynamics in the rhizosphere of full-grown root systems are needed.MethodsRice was grown in large columns using a P-deficient soil at three different P supplies in the topsoil (deficient, suboptimal, non-limiting) in combination with two water regimes (field capacity versus drying periods). Root architectural parameters and P uptake were determined. Using a multiscale model of water and nutrient uptake, in-silico experiments were conducted by mimicking similar P and water treatments. First, 3D root systems were reconstructed by calibrating an architecure model with observed phenological root data, such as nodal root number, lateral types, interbranch distance, root diameters, and root biomass allocation along depth. Secondly, the multiscale model was informed with these 3D root architectures and the actual transpiration rates. Finally, water and P uptake were simulated.Key resultsThe plant P uptake increased over threefold by increasing P and water supply, and drying periods reduced P uptake at high but not at low P supply. Root architecture was significantly affected by the treatments. Without calibration, simulation results adequately predicted P uptake, including the different effects of drying periods on P uptake at different P levels. However, P uptake was underestimated under P deficiency, a process likely related to an underestimated affinity of P uptake transporters in the roots. Both types of laterals (i.e. S- and L-type) are shown to be highly important for both water and P uptake, and the relative contribution of each type depend on both soil P availability and water dynamics. Key drivers in P uptake are growing root tips and the distribution of laterals.ConclusionsThis model-data integration demonstrates how multiple co-occurring single root phene responses to environmental stressors contribute to the development of a more efficient root system. Further model improvements such as the use of Michaelis constants from buffered systems and the inclusion of mycorrhizal infections and exudates are proposed.


1985 ◽  
Vol 65 (1) ◽  
pp. 47-60 ◽  
Author(s):  
M. GIROUX ◽  
T. SEN TRAN

The objective of this study was to evaluate different available P extracting methods in relation with soil properties, oat yield and plant P uptake. Six chemical extractants (Bray-1, Bray-2, new Mehlich, North Carolina DA-4, DA-10, and Olsen) and two anion exchange resins (F− and HCO3−) were compared on 42 acid soils. The DA-4, DA-10, new Mehlich, and HCO3− resin methods showed the best correlation with oat yield and plant P uptake. The Bray-1, Bray-2 methods were significantly less correlated than the other methods. The HCO3− resin was better than F− resin to predict plant P uptake and yield. Available P levels as determined by these eight methods were classified poor, medium and rich by the Cate and Nelson procedure. Oxalate extractable Al, pH (NaF), pH (H2O), exchangeable (Ca + Mg), forms of P, maximum P fixation capacity and soil texture have great influence on the plant P uptake. Soil organic matter content and oxalate-extractable Fe had significantly less important an effect. The Bray-1 and Bray-2 methods were the most affected by soil properties especially oxalate-extractable Al. The P-HCl/P-DAF ratio proposed by Mehlich to identify forms of soil P indicated that seven soils contain predominantly Ca-P and 21 soils with predominantly Al-P and Fe-P. This ratio was related with oxalate extractable Al (r = − 0.32*), pH NaF (r = − 0.59**), pH H2O (r = 0.52**) and exchangeable Ca + Mg (r = 0.55**). The maximum P fixation capacity (M) ranged from 150 to 4200 μg P/g soil and was closely related with oxalate-extractable Al (r = 0.81**), pH NaF (r = 0.74**), pH H2O (r = − 0.36*) and Mehlich ratio (r = − 0.33*). The maximum P buffering capacity (Mb) of soils was also measured and showed the best correlation with oxalate-extractable Al (r = 0.84**) and pH NaF (r = 0.53**). Key words: Soil testing, available P, anion exchange resins, P fixation, oxalate-Al, forms of P


2019 ◽  
Vol 11 (17) ◽  
pp. 4799
Author(s):  
Wenting Jiang ◽  
Xiaohu Liu ◽  
Xiukang Wang ◽  
Lihui Yang ◽  
Yuan Yin

Optimizing the phosphorus (P) application rate can increase grain yield while reducing both cost and environmental impact. However, optimal P rates vary substantially when different targets such as maximum yield or maximum economic benefit are considered. The present study used field experiment conducted at 36 experiments sites for maize to determine the impact of P application levels on grain yield, plant P uptake, and P agronomy efficiency (AEP), P-derived yield benefits and private profitability, and to evaluated the agronomically (AOPR), privately (POPR), and economically (EOPR) optimal P rate at a regional scale. Four treatments were compared: No P fertilizer (P0); P rate of 45–60 kg ha−1 (LP); P rate of 90–120 kg ha−1 (MP); P rate of 135–180 kg ha−1 (HP). P application more effectively increased grain yield, reaching a peak at MP treatment. The plant P uptake in HP treatment was 37.4% higher than that in P0. The relationship between P uptake by plants (y) and P application rate (x) can be described by the equation y = −0.0003x2 + 0.1266x + 31.1 (R2 = 0.309, p < 0.01). Furthermore, grain yield (y) and plant P uptake (x) across all treatments also showed a significant polynomial function (R2 = 0.787–0.846). The MP treatment led to highest improvements in P agronomic efficiency (AEP), P-derived yield benefits (BY) and private profitability (BP) compared with those in other treatments. In addition, the average agronomically (AOPR), privately (POPR), and economically optimal P rate (EOPR) in 36 experimental sites were suggested as 127.9 kg ha−1, 110.8 kg ha−1, and 114.4 kg ha−1, which ranged from 80.6 to 211.3 kg ha−1, 78.2 to 181.8 kg ha−1, and 82.6 to 151.6 kg ha−1, respectively. Economically optimal P application (EOPR) can be recommended, because EOPR significantly reduced P application compared with AOPR, and average economically optimal yield was slightly higher compared with the average yield in the MP treatment. This study was conducive in providing a more productive, use-effective, profitable, environment-friendly P fertilizer management strategy for supporting maximized production potential and environment sustainable development.


Sign in / Sign up

Export Citation Format

Share Document