Solution blowing spinning technology and plasma-assisted oxidation-reduction process toward green development of electrically conductive cellulose nanofibers

Author(s):  
Hanadi A. Katouah ◽  
Refat El-Sayed ◽  
Nashwa M. El-Metwaly
2007 ◽  
Vol 561-565 ◽  
pp. 1699-1701
Author(s):  
Nobuyuki Takahira ◽  
Takeshi Yoshikawa ◽  
Toshihiro Tanaka

Unusual wetting behavior of liquid Cu was found on a surface-oxidized iron substrate in reducing atmosphere. Liquid Cu wetted and spread very widely on the iron substrate when a droplet was attached with the substrate in Ar-10%H2 after the surface oxidation of the substrate. The oxidationreduction process fabricates a porous layer at the surface of the iron substrate. The pores in the porous iron layer are 3-dimensionally interconnected. Thus, liquid metals, which are contacted with the reduced iron samples, penetrate into these pores by capillary force to cause the unusual wetting behavior. It has been already confirmed that liquid Ag, Sn, In and Bi show this phenomenon onto surface-porous iron samples as well as liquid Cu. This unusual wetting behavior of a liquid metal has been correlated to the normal contact angle of the liquid metal on a flat iron substrate.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2016 ◽  
Vol 48 (9) ◽  
pp. 969-972
Author(s):  
Hiroshi Takano ◽  
Masafumi Hiraishi ◽  
Shigeru Yaguchi ◽  
Satoru Iwata ◽  
Shin-ichiro Shoda ◽  
...  

2019 ◽  
Vol 20 (12) ◽  
pp. 2855 ◽  
Author(s):  
Linyuan Shen ◽  
Mailin Gan ◽  
Qianzi Tang ◽  
Guoqing Tang ◽  
Yanzhi Jiang ◽  
...  

The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.


2016 ◽  
Vol 152 ◽  
pp. 361-369 ◽  
Author(s):  
Makara Lay ◽  
J. Alberto Méndez ◽  
Marc Delgado-Aguilar ◽  
Kim Ngun Bun ◽  
Fabiola Vilaseca

PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0204673 ◽  
Author(s):  
Felipe Alves de Almeida ◽  
Deisy Guimarães Carneiro ◽  
Tiago Antônio de Oliveira Mendes ◽  
Edvaldo Barros ◽  
Uelinton Manoel Pinto ◽  
...  

2010 ◽  
Vol 12 (4) ◽  
pp. 72-78 ◽  
Author(s):  
Samidha Saxena ◽  
Reena Dwivedi ◽  
Sheenu Bhadauria ◽  
V. Chumbhale ◽  
Rajendra Prasad

Kinetics studies and mechanism evolution of the epoxidation of styrene over nanoporous Au doped TS-1 A kinetic investigation of the slurry phase epoxidation of styrene with hydrogen peroxide has been carried out, for the first time, over nanoporous Au doped TS-1 catalyst, in a batch reactor, in the temperature range of 313-333 K. It was found that product selectivity and the rate of reaction are greatly influenced by concentrations of styrene and hydrogen peroxide. Kinetics studies reveal that the mechanism of the reaction is of the "Redox" type. The rate equation, r = k1 k2 PO PH / (k1 PO + k2 PH) deduced, assuming a steady state involving two stage oxidation-reduction process, represent the data most satisfactorily for the conversion of styrene to styrene oxide. A tentative mechanism of the process has also been suggested.


Sign in / Sign up

Export Citation Format

Share Document