scholarly journals Facile fabrication of Fe-TiO2 thin film and its photocatalytic activity

Author(s):  
Almudena Aguinaco ◽  
Beatriz Amaya ◽  
Milagrosa Ramírez-del-Solar

AbstractFe3+-TiO2 (Fe-TiO2) thin films were successfully prepared using a “sandwich” approach. TiO2 NPs were doped with different Fe3+ content (0.05%, 0.1%, 0.2% molar ratio), and the modified TiO2 NPs were deposited on glass flat support by dip coating.Structural, morphological, optical, and photocatalytic properties of Fe-TiO2 thin films were studied. XPS spectra confirm the presence of Ti, Fe, O, and defective –OH groups at the material surface. The Fe 2p spectrum demonstrates the existence of Fe3+. SEM images indicate that the incorporation of Fe3+ deforms in some degree the homogeneity of the TiO2 system. Additionally, incorporation of Fe3+ ions to the network creates an impurity band near the VB due to the oxygen vacancies, resulting in the reduction of the effective optical band gap. Photocatalytic activity of fabricated thin films in the elimination of sulfamethoxazole (SMT) follows pseudo first-order kinetics. The highest SMT removal yields were achieved using the sample with 0.05%Fe. Additionally, the use of greater thicknesses improves the removal performance. However, material detachment limits the maximum usable value around 6 µm.Finally, stability and reusability of catalysts were confirmed studying the photocatalytic activity over three cycles and evaluating that no Fe3+ leaching occurred. Graphical abstract

2019 ◽  
Vol 56 ◽  
pp. 152-157 ◽  
Author(s):  
Abdelouahab Noua ◽  
Hichem Farh ◽  
Rebai Guemini ◽  
Oussama Zaoui ◽  
Tarek Diab Ounis ◽  
...  

Nickel oxide (NiO) thin films were successfully deposited by sol-gel dip-coating method on glass substrates. The structural, morphological and optical properties in addition to the photocatalytic activity of the prepared films were investigated. The results show that the films have a polycrystalline NiO cubic structure with dense NiO grains and average optical transmittance in the visible region. The photocatalytic properties of the films were studied through the degradation of methylene blue and 89% of degradation was achieved for 4.5h of solar light irradiation exposure which indicates the capability of NiO photocatalytic activity.


2009 ◽  
Vol 24 (8) ◽  
pp. 2541-2546 ◽  
Author(s):  
Eisuke Yokoyama ◽  
Hironobu Sakata ◽  
Moriaki Wakaki

ZrO2 thin films containing silver nanoparticles were prepared using the sol-gel method with Ag to Zr molar ratios [Ag]/[Zr] = 0.11, 0.25, 0.43, 0.67, 1.00, 1.50, and 2.33. After dip coating on glass substrate, coated films were annealed at 200 and 300 °C in air. X-ray diffraction peaks corresponding to crystalline Ag were observed, but a specific peak corresponding to ZrO2 was not observed. At the molar ratio [Ag]/[Zr] = 0.25, the particle size of Ag distributed broadly centered at 17 nm for an annealing temperature of 200 °C and at 25 nm for 300 °C. The films annealed in air at 200 °C showed an absorption band centered at 450 nm because of the silver surface plasmon resonance, whereas films heated at 300 °C in air caused a red shift of the absorption to 500 nm. The absorption peak was analyzed using the effective dielectric function of Ag-ZrO2 composite films modeled with the Maxwell-Garnett expression.


2014 ◽  
Vol 608 ◽  
pp. 164-169
Author(s):  
Peerawas Kongsong ◽  
Lek Sikong ◽  
Sutham Niyomwas ◽  
Vishnu Rachpech

The Fe3+ and N–doped 3SnO2/TiO2 composite thin films and undoped films coated on glass fibers were prepared by sol–gel and dip–coating methods. The films were calcined at 600°C for 2 hour and characterized by XRD, SEM, EDS and XPS. The photocatalytic activity of the coated glass fibers was determined by means of degradation of a methylene blue (MB) solution and humic acid (HA). It was found that the optimized 20N/3SnO2/TiO2composite films exhibit a high photocatalytic activity and HA could be rapidly removed from water. The main factor affecting the HA degradation of 20N/3SnO2/TiO2 films is quantity of glass fibers loading, irradiation power of UV lamp and flow rate of water.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1840
Author(s):  
Dong Xu ◽  
Qian Yu ◽  
Taiyun Chen ◽  
Sujuan Zhong ◽  
Jia Ma ◽  
...  

ZnO porous thin films were synthesized as antireflection coatings via a sol–gel dip-coating method with polyethylene glycol (PEG1000) utilized as a polymeric porogen on alumina transparent ceramics. The pore formation mechanism of the ZnO porous thin films was proposed through thermal and Fourier transformation infrared spectrometer (FTIR) analyses. The effect of sol concentrations on crystal structure, microstructure, and optical properties was also discussed. The experiment results indicated that all the ZnO thin films exhibited a hexagonal wurtzite structure with their preferred orientation along a (0 0 2) plane by X-ray diffraction (XRD) patterns. The grain size of the films increased from 30.5 to 37.4 nm with the sol concentration ranging from 0.2 to 1.0 M. Furthermore, scanning electron microscopy (SEM) images show that the pores on the surface were observed to first decrease as the sol concentration increased and then to disappear as the sol concentration continued to increase. The UV spectrum presents a maximum transmittance of 93.5% at a wavelength of 600 nm at a concentration of 0.6 M, which will be helpful in the practical applications of ZnO porous film on alumina transparent ceramic substrates. The pore formation mechanism of ZnO porous thin films can be ascribed to ring-like network structures between the PEG1000 and zinc oligomers under the phase separation effect.


2014 ◽  
Vol 979 ◽  
pp. 90-93 ◽  
Author(s):  
Weerachai Sangchay ◽  
Tanarat Rattanakool

The pure TiO2and SnO2-TiO2thin films on glass substrate were fabricated using a sol-gel dip coating technique. The thin films were annealed at the temperature of 700 °C for 2 h with the heating rate of 10 °C/min. The microstructures of the fabricated thin films were characterized by SEM and XRD techniques. The photocatalytic activities of the thin films were also tested by the degradation of methylene blue (MB) solution under UV irradiation. Finally, hydrophilic or self-cleaning properties of thin films were evaluated by measuring the contact angle of water droplet on the thin films with and without UV irradiation. It was found that 1 %mol SnO2-TiO2thin films shows the highest of photocatalytic activity and provide the most self-cleaning properties.


2003 ◽  
Vol 10 (04) ◽  
pp. 635-640 ◽  
Author(s):  
C.-K. Jung ◽  
S.-H. Cho ◽  
S.-B. Lee ◽  
T.-K. Kim ◽  
M.-N. Lee ◽  
...  

We have deposited titanium dioxide TiO 2 thin films on glass using a single molecular precursor such as titanium (IV) isopropoxide ( Ti [ OCH ( CH 3)2]4, 97%) by sol–gel processing. Argon and oxygen rf plasma treatments at 295 K for 0.5 h in the power range of 50–200 W were also used to elevate photocatalytic activity of the as-grown TiO 2 films. A superhydrophilic property and surface morphology change appeared in the light irradiation with O 2 plasma treatment. In this work, the effect of the plasma with photocatalyst ( TiO 2) on the improvement of hydrophilic properties has mainly been investigated. Photocatalytic activity was evaluated by measurements of the uv/vis. irradiation, refractive index, contact angle, and AFM analysis. We confirmed that plasma treatment is a very reliable method for the synthesis of TiO 2 thin films with high catalytic performance.


2021 ◽  
Vol 10 (3) ◽  
pp. xx-xx
Author(s):  
Doanh Vu Viet ◽  
Trang Nguyen Thu ◽  
Kiet Le Minh ◽  
Minh Duong Quoc ◽  
Thong Trinh Quang ◽  
...  

In this study, zinc oxide (ZnO) doped with Sn thin films were deposited on the glass substrate at 550 °C by dip-coating technique using the solution synthesized by sol-gel method. The structural, surface morphology, optical and photocatalytic property of thin films were studied. X-ray diffraction (XRD) analysis showed that the Sn-doping greatly changed the microstructure, morphology and optical properties of ZnO films, which may contribute to the enhancement of photocatalytic activity. Additionally, the photocatalytic activity was investigated using methylene blue  dye under solar irradiation, with has high UV index from 7 to 8. The results indicated that Sn-doped ZnO had a higher photocatalytic activity and Sn dopant greatly increased the photocatalytic activity of ZnO thin film.


2014 ◽  
Vol 314 ◽  
pp. 910-918 ◽  
Author(s):  
Z. Hamden ◽  
S. Boufi ◽  
D.S. Conceição ◽  
A.M. Ferraria ◽  
A.M. Botelho do Rego ◽  
...  

2016 ◽  
Vol 23 (02) ◽  
pp. 1550099
Author(s):  
QIONGZHI GAO ◽  
XIN LIU ◽  
WEI LIU ◽  
FANG LIU ◽  
YUEPING FANG ◽  
...  

In this work, the titanium dioxide ([Formula: see text]) nanofilms co-doped with [Formula: see text] and [Formula: see text] ions were successfully fabricated by the sol–gel method with dip-coating process. Methylene blue was used as the target degradation chemical to study the photocatalytic properties affected by different doping contents of [Formula: see text] and [Formula: see text] ions. The samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The results indicated that both pure [Formula: see text] nanofilms and single-doped samples possessed the photocatalytic activity in degradation of methylene blue. However, when the nanofilms co-doped with [Formula: see text] and [Formula: see text] ions were fabricated at the molar ratio of 3:1 ([Formula: see text]:[Formula: see text]), they exhibited the best photocatalytic activity after the heat treatment at [Formula: see text]C for 2[Formula: see text]h. The wettability property test indicated that the [Formula: see text] nanofilms co-doped with [Formula: see text] and [Formula: see text] ions in the molar ratio 3:1 owned an excellent hydrophilic property.


Sign in / Sign up

Export Citation Format

Share Document