Photocatalytic Degradation of Methylene Blue by NiO Thin Films under Solar Light Irradiation

2019 ◽  
Vol 56 ◽  
pp. 152-157 ◽  
Author(s):  
Abdelouahab Noua ◽  
Hichem Farh ◽  
Rebai Guemini ◽  
Oussama Zaoui ◽  
Tarek Diab Ounis ◽  
...  

Nickel oxide (NiO) thin films were successfully deposited by sol-gel dip-coating method on glass substrates. The structural, morphological and optical properties in addition to the photocatalytic activity of the prepared films were investigated. The results show that the films have a polycrystalline NiO cubic structure with dense NiO grains and average optical transmittance in the visible region. The photocatalytic properties of the films were studied through the degradation of methylene blue and 89% of degradation was achieved for 4.5h of solar light irradiation exposure which indicates the capability of NiO photocatalytic activity.

2020 ◽  
Vol 62 ◽  
pp. 87-95
Author(s):  
Hichem Farh ◽  
Abdelouahab Noua ◽  
Rebai Guemini ◽  
Djamal Eldine Guitoume ◽  
Oussama Zaoui

In this work, we studied the ZnO film thickness effect on the photocatalytic performance of n-ZnO/p-NiO heterostructures. The ZnO and NiO films were prepared by sol-gel dip-coating technique and the thickness of the ZnO film was varied by changing the number of coatingsfrom 2 to12. The formation of the p-NiO/n-ZnO heterostructure was confirmed by X ray diffraction (XRD). The obtained ZnO films present a wurtzite structure with a preferred orientation along (002) direction while the NiO film present a cubic structure highly oriented along (200) direction. UV-visible transmittance spectra of the prepared heterostructures revealed a good transparency in the visible region. The photocatalytic propertiesof the n-ZnO/p-NiO heterostructures were investigated by measuring the degradation rate of methylene blue. All the samples exhibit a good photocatalytic activity under solar light irradiation. The photocatalytic activity of p-NiO/n-ZnO heterostructureswas strongly correlated with the number of ZnO coatings. The highest photocatalytic activity was obtained at 6 coatings with a degradation rate of methylene blue equal to 98.67% for 4.5h of irradiation.


2020 ◽  
Vol 9 (4) ◽  
pp. 42-48
Author(s):  
Nui Pham Xuan ◽  
Hoa Nguyen Thi ◽  
Tien Nguyen Trung ◽  
Tai Le Huu ◽  
Thi Tran Thi Van

In this research, photocatalytic materials of TiO2, Ag-TiO2, Ag-TiO2/perlite were synthesized by the sol-gel method. By combining the photocatalytic activity between Ag-TiO2 and Perlite mineral, the Ag-TiO2/perlite composite has overcome the disadvantages of pristine TiO2, such as high band gap energy, low light utilization and easy recombination of electrons and holes. The synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherm, UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) under solar light irradiation. Photodegradation studies revealed a 95% removal of MB dye via the synthesized Ag-TiO2/perlite after 150 min of irradiation. Reusability of this hybrid photocatalyst system was tested and only a 3% decrease was observed after four cycles.


2015 ◽  
Vol 3 (34) ◽  
pp. 17858-17865 ◽  
Author(s):  
Xiaohong Hu ◽  
Qi Zhu ◽  
Xinlong Wang ◽  
Naoki Kawazoe ◽  
Yingnan Yang

P/Ag/Ag2O/Ag3PO4/TiO2 composite photocatalyst has been successfully prepared by a sol–gel method. It shows highly enhanced photocatalytic ability and stability under simulated solar light irradiation.


2014 ◽  
Vol 979 ◽  
pp. 90-93 ◽  
Author(s):  
Weerachai Sangchay ◽  
Tanarat Rattanakool

The pure TiO2and SnO2-TiO2thin films on glass substrate were fabricated using a sol-gel dip coating technique. The thin films were annealed at the temperature of 700 °C for 2 h with the heating rate of 10 °C/min. The microstructures of the fabricated thin films were characterized by SEM and XRD techniques. The photocatalytic activities of the thin films were also tested by the degradation of methylene blue (MB) solution under UV irradiation. Finally, hydrophilic or self-cleaning properties of thin films were evaluated by measuring the contact angle of water droplet on the thin films with and without UV irradiation. It was found that 1 %mol SnO2-TiO2thin films shows the highest of photocatalytic activity and provide the most self-cleaning properties.


2013 ◽  
Vol 773 ◽  
pp. 912-916
Author(s):  
Yong Mei Liu ◽  
Zhuan Nian Liu ◽  
Xiao Gang Han

nanoTiO2photocatalyst modified by N and Fe3+ion were loaded on fly ash forming adsorbent (FFA) using the sol-gel dip-coating technique. The structure and properties of the samples were characterized by UV-Vis spectrum, SEM and XRD. The related influencing factors were also discussed. The results showed that modified TiO2was immobilized on the surface of FFA in the form of nanocrystalline and an apparent absorption peak appears in the visible region of photocatalyst doped with N,Fe ion. Moreover, under visible light irradiation for 6h, the degradation rate of 50mg/L of methylene blue by loaded catalyst reached 92.6 %.


2013 ◽  
Vol 634-638 ◽  
pp. 263-266
Author(s):  
Chao Lin Miao ◽  
Hui Wang

nano-sized TiO2 doped with different percentage of N was prepared quickly by sol-gel process,and the photocatalytic properties of degradation dyes wastewaters were studied under stimulant solar light irradiation in the ambient air. Some properties of photocatalysts were characterized by the means of XPS, UV-Vis ,XRD, and degradation loss. The results showed the catalytic activity was the best when the doped of nitrogen was 0.5% at calcinated 400°C,and the degradation of the methylene blue was almost completed.


Author(s):  
Brijesh Pare ◽  
Satish Piplode ◽  
Vaishali Joshi

Flower like bismuth oxy chloride (BiOCl) was successfully synthesized by a simple hydrolytic method at room temperature. The precursor and as-prepared samples were characterized by X-ray diffraction (XRD), High Resolution Field Emission Scanning Electron Microscope (HR FESEM). The results indicated that the as-prepared BiOCl sample is self-assembled hierarchically with nano sheets. The photocatalytic activity of BiOCl was tested on the degradation of the Oxamyl (OM) under solar light irradiation. The results showed that pesticide molecules could be efficiently degraded over BiOCl under solar light irradiation. All the experiment were carried out in the following reaction condition, [OM] = 10-4 mol dm-3, BiOCl NPs= 40mg/50ml, pH= 6.3. Effect of operational parameter such as concentration of H2O2, K2S2O8, FeCl3, Fenton’s reagent (Fe3+/H2O2) and N2, O2 purging on the photocatalytic degradation was observed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ji-guo Huang ◽  
Xue-ting Guo ◽  
Bo Wang ◽  
Lin-yang Li ◽  
Mei-xia Zhao ◽  
...  

The undoped and Mo-doped TiO2nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD), diffuse reflectance UV-visible absorption spectra (UV-vis DRS), X-ray photoelectron spectra (XPS), and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+took the place of Ti4+in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2to 2.73 eV of TiMo0.02O) and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2sample exhibited the highest photocatalytic activity.


2018 ◽  
Vol 42 (13) ◽  
pp. 11109-11116 ◽  
Author(s):  
R. Salimi ◽  
A. A. Sabbagh Alvani ◽  
N. Naseri ◽  
S. F. Du ◽  
D. Poelman

A new plasmonic Ag hybridized CuWO4/WO3 heterostructured nanocomposite was successfully synthesized via a ligand-assisted sol gel method and the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation.


Sign in / Sign up

Export Citation Format

Share Document