scholarly journals A taste of the new ReCiPe for life cycle assessment: consequences of the updated impact assessment method on food product LCAs

2019 ◽  
Vol 25 (12) ◽  
pp. 2315-2324 ◽  
Author(s):  
Erik Dekker ◽  
Michiel C. Zijp ◽  
Mirjam E. van de Kamp ◽  
Elisabeth H. M. Temme ◽  
Rosalie van Zelm

Abstract Purpose Recently, an update of the Life Cycle Impact Assessment (LCIA) method ReCiPe was released: ReCiPe 2016. The aim of this study was to analyse the effect of using this update instead of the previous version: ReCiPe 2008. Do the absolute outcomes change significantly and if so, does this lead to different conclusions and result-based recommendations? Methods Life cycle assessments (LCAs) were conducted for 152 foods for which cradle-to-plate inventories were available and that together are estimated to account for 80% of the total greenhouse gas emissions, land use and fossil resource depletion of food consumption in the Netherlands. The LCIA was performed on midpoint and endpoint level, with both ReCiPe 2008 and 2016, and using the three perspectives provided by ReCiPe. Both the uses of the global-average characterisation factors (CFs) and the Dutch-specific CFs were explored. Results and discussion Results showed a strong correlation between LCAs performed with ReCiPe 2008 and with 2016 on midpoint and endpoint level, with Spearman’s rank correlation between 0.85 and 0.99. Ranking of foods related to their overall environmental impact did not differ significantly between methods when using the default hierarchist perspective. Differences on endpoint level were largest when using the individualist perspective. The predicted average absolute impact of the foods studied did change significantly when using the new ReCiPe, regardless of which perspective was used: a larger impact was found for climate change, freshwater eutrophication and water consumption and a lower impact for acidification and land use. The use of Dutch CFs in ReCiPe 2016 leads to significant differences in LCA results compared with the use of the global-average CFs. When looking at the average Dutch diet, ReCiPe 2016 predicted a larger impact from greenhouse gas emissions and freshwater eutrophication, and a lower impact from acidification and land use than ReCiPe 2008. Conclusions The update of ReCiPe leads to other LCIA results but to comparable conclusions on hotspots and ranking of food product consumption in the Netherlands. Looking at the changes per product due to the update, we recommend updating endpoint-level LCAs conducted with ReCiPe 2008, especially for products that emit large amounts of PM2.5 or consume large amounts of water within their life cycle. As new and updated methods reflect the scientific state of art better and therefore include less model uncertainty, we recommend to always use the most recent and up-to-date methodology in new LCAs.

2021 ◽  
Vol 13 (17) ◽  
pp. 9926
Author(s):  
Anna Kustar ◽  
Dalia Patino-Echeverri

This paper’s purpose is to shed light on the current understanding of the environmental benefits of vegetarian and vegan diets, considering the inclusion of a significant share of processed foods, such as plant-based burgers. We review recent Environmental Life Cycle Assessments of the three main diet types, omnivore, vegetarian, and vegan, and then assesses the environmental impacts of adding two commercial brands of plant-based burgers to vegetarian and vegan diets. The recent literature confirms that compared to omnivore diets adhering to the same dietary guidelines, vegan diets reduce land-use impacts by 50–86%, water use by 22–70%, and greenhouse gas emissions by 21–70%, while vegetarian diets achieve reductions of 27–84% in land use, 15–69% in water use, and 24–56% in greenhouse emissions. The environmental benefits of vegan and vegetarian diets are not affected by the consumption of highly processed plant-based burgers. Consumers reduce land use, water use, and greenhouse gas emissions between 87% and 96% by choosing a Beyond or Impossible burger instead of a regular beef patty. These results are robust to the uncertainties associated with a variety of beef production systems; there is no indication that a situation or condition may make beef burgers more environmentally friendly than these two plant-based alternatives, or that the addition of plant-based meats to vegan and vegetarian diets may reduce their environmental benefits.


2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


Sign in / Sign up

Export Citation Format

Share Document