scholarly journals Elevated salinity and water table drawdown significantly affect greenhouse gas emissions in soils from contrasting land-use practices in the prairie pothole region

2021 ◽  
Author(s):  
Shayeb Shahariar ◽  
Richard Farrell ◽  
Raju Soolanayakanahally ◽  
Angela Bedard-Haughn
2021 ◽  
Author(s):  
Shayeb Shahariar ◽  
Richard Farrell ◽  
Raju Soolanayakanahally ◽  
Angela Bedard-Haughn

Abstract Land-use practices can alter shallow groundwater and salinity, further impacting greenhouse gas (GHG) emissions, particularly in the hydrologically dynamic riparian zones of wetlands. Emissions of CO2, CH4, and N2O were estimated in soil cores collected from two prairie pothole region (PPR) sites with three adjacent land-use practices (i.e., annual crop = AC, pasture = PA, and short rotation willow = SRW) and treated with declining water table depths (2 to 26 cm), and salinity (S0 = control, S1 = 6 mS cm− 1, and S2 = 12 mS cm− 1) in a microcosm experiment. Land-use practices significantly (p < 0.001) affected GHG emissions in soils from both sites in the order of PA > AC = SRW. Compared to the control, emissions of CO2 and CH4 were significantly lower under higher salinity treatments (i.e., S1 and S2), while N2O was significantly higher (p < 0.05). Emissions under declining groundwater table depths were significantly (p < 0.001) variable and specific to each gas, indicating the impacts of shifted soil moisture regime. Overall, the CO2 and CH4 emissions increased up to week four and then decreased with declining water table depths, whereas N2O emission increased up to a maximum at week six. The soils from SRW had considerably lower global warming potential compared to AC and PA. Groundwater salinity in soils from contrasting land-use in the PPR has significant impacts on GHG emissions with potential for crucial climate feedback; however, the magnitude and direction of the impacts depend on hydrology.


2011 ◽  
pp. 224-228
Author(s):  
Uwe Lahl

The study proposes a regional approach to calculating indirect land use change (iLUC). The goal is to determine the greenhouse gas emissions (GHG) of biofuels brought about by iLUC in a specific region. A regional approach can be based on the conditions specific to the respective region and the data for this region which is contained in country statistics. This makes the results more resilient. It also appears that LUC is mainly caused locally or regionally. Relevant policy scenarios for different regions were calculated with a regional model. The calculations show reliable results. It is possible to introduce such a regional model in regulations for combating iLUC. The analysis of the policy options for combating iLUC shows that a regional approach would have a much more effective steering effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 627-644 ◽  
Author(s):  
Mark Richards ◽  
Mark Pogson ◽  
Marta Dondini ◽  
Edward O. Jones ◽  
Astley Hastings ◽  
...  

2013 ◽  
Vol 368 (1619) ◽  
pp. 20120171 ◽  
Author(s):  
Gillian L. Galford ◽  
Britaldo Soares-Filho ◽  
Carlos E. P. Cerri

The Brazilian Amazon frontier shows how remarkable leadership can work towards increased agricultural productivity and environmental sustainability without new greenhouse gas emissions. This is due to initiatives among various stakeholders, including national and state government and agents, farmers, consumers, funding agencies and non-governmental organizations. Change has come both from bottom-up and top-down actions of these stakeholders, providing leadership, financing and monitoring to foster environmental sustainability and agricultural growth. Goals to reduce greenhouse gas emissions from land-cover and land-use change in Brazil are being achieved through a multi-tiered approach that includes policies to reduce deforestation and initiatives for forest restoration, as well as increased and diversified agricultural production, intensified ranching and innovations in agricultural management. Here, we address opportunities for the Brazilian Amazon in working towards low-carbon rural development and environmentally sustainable landscapes.


2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

&lt;p&gt;Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) and methane (CH&lt;sub&gt;4&lt;/sub&gt;) data from seven peatlands in Estonia collected during vegetation season in 2017&amp;#8211;2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO&lt;sub&gt;2&lt;/sub&gt;, CH&lt;sub&gt;4&lt;/sub&gt;, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R&lt;sub&gt;eco&lt;/sub&gt;) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R&lt;sub&gt;eco&lt;/sub&gt; CO&lt;sub&gt;2&lt;/sub&gt; and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO&lt;sub&gt;2&lt;/sub&gt; emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document