scholarly journals Distribution of environmental performance in life cycle assessments—implications for environmental benchmarking

Author(s):  
Sebastian Welling ◽  
Sven-Olof Ryding

Abstract Purpose Life cycle assessment (LCA) is considered a robust method to analyse the environmental impacts of products and is used in public and private market applications such as Green Public Procurement (GPP) and Environmental Management Systems (EMS). Despite the usefulness of the methodology, difficulties exist with the interpretation of LCA results. The use of benchmarks can facilitate this process, but there is yet little research on the definition of environmental benchmarks. The aim of this paper is to analyse the distribution of environmental performance used for the definition of the benchmark and how it effects the use in selected product categories. Method LCA results from 54 Environmental Product Declarations (EPDs) for insulation materials and 49 EPDs for bakery products are tested for their distribution. The outcome from the statistical analysis is used to compare and evaluate three calculation methods for a benchmark. Results and discussion The results of the study show that distributions and mid- and end-points of environmental performances of the studied indicators differ significantly for the two product categories. While some indicators for bakery products were closer to a normal distribution, most of the indicators are not normally distributed. This is reflected in the comparison of the chosen calculation methods for a benchmark, which showed that the distribution of the data affects the classification of the benchmark as well as the position of values on the benchmark. Conclusion The results emphasise that analysis of further product groups and the associated distribution of the environmental performance is needed to understand the implications of calculation methods on a benchmark. The availability of comparatively large datasets in a common structure is crucial for these analyses and can be facilitated through the digitalisation of LCA- and EPD-information. Furthermore, more research is needed on the communication formats for different benchmarking options, which must be applied for the different intended audiences to be effective.

Author(s):  
Shuyi Wang ◽  
Daizhong Su ◽  
You Wu ◽  
Zijian Chai

Abstract An approach for integrating life-cycle assessment (LCA) into the eco-design of lighting products was developed, and LCAs of five lighting products that are currently on the market were then carried out using this approach. Based on the results of these LCAs, the sustainability requests for lighting products were derived and embedded into the product design specification (PDS), thus ensuring that any product developed according to the PDS would have the desired eco-design features. A new sustainable lighting product was then designed according to the PDS and manufactured, after which the new product underwent LCA. Upon comparing the results of the LCA of the new product with the LCA results for the existing lighting products, the newly designed product was found to provide better environmental performance than the existing products (a 27–58% reduction in environmental impact).


2016 ◽  
Vol 35 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Rafael Laurenti ◽  
Åsa Moberg ◽  
Åsa Stenmarck

Knowledge about the total waste generated by the production of consumer goods can help raise awareness among policy-makers, producers and consumers of the benefits of closing loops in a future circular economy, avoiding unnecessary production and production steps and associated generation of large amounts of waste. In strict life cycle assessment practice, information on waste outputs from intermediate industrial processes of material and energy transformation is translated into and declared as potential environmental impacts, which are often not reported in the final results. In this study, a procedure to extract available intermediate data and perform a systematic pre-consumer waste footprint analysis was developed. The pre-consumer waste footprint concept was tested to analyse 10 generic products, which provided some novel and interesting results for the different product categories and identified a number of challenges that need to be resolved in development of the waste footprint concept. These challenges include standardised data declaration on waste in life cycle assessment, with a separation into waste categories illustrating the implicit environmental and scale of significance of waste types and quantities (e.g. hazardous waste, inert waste, waste for recycling/incineration) and establishment of a common definition of waste throughout sectors and nations.


2020 ◽  
Vol 12 (6) ◽  
pp. 2170 ◽  
Author(s):  
Joshua Sohn ◽  
Pierre Bisquert ◽  
Patrice Buche ◽  
Abdelraouf Hecham ◽  
Pradip P. Kalbar ◽  
...  

Despite advances in the data, models, and methods underpinning environmental life cycle assessment (LCA), it remains challenging for practitioners to effectively communicate and interpret results. These shortcomings can bias decisions and hinder public acceptance for planning supported by LCA. This paper introduces a method for interpreting LCA results, the Argumentation Corrected Context Weighting-LCA (ArgCW-LCA), to overcome these barriers. ArgCW-LCA incorporates stakeholder preferences, corrects unjustified disagreements, and allows for the inclusion of non-environmental impacts (e.g., economic, social, etc.) using a novel weighting scheme and the application of multi-criteria decision analysis to provide transparent and context-relevant decision support. We illustrate the utility of the method through two case studies: a hypothetical decision regarding energy production and a real-world decision regarding polyphenol extraction technologies. In each case, we surveyed a relevant stakeholder group on their environmental views and fed their responses into the model to provide decision support that is relevant to their perspective. We found marked differences between results using ArgCW-LCA and results from a conventional analysis using an equal-weighting scheme, as well as differentiation between stakeholder preference groups, indicating the importance of applying the perspective of the particular stakeholder group. For instance, there was a rank reversal of alternatives when comparing between an equal weighting approach for all environmental and economic dimensions and ArgCW-LCA. ArgCW-LCA provides opportunity for both public and private sector incorporation of LCA, such as in developing enlightened stakeholder value measures. This is achieved through enabling the LCA practition to provide public and private actors’ interpreted LCA results in a manner that incorporates educated stakeholder perspectives. Furthermore, the method encourages stakeholder multiplicity through participatory design and policymaking that can enhance public backing of actions that can make society more sustainable.


2012 ◽  
Vol 17 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Aleksander Srdić ◽  
Jana Šelih

In today’s world, the definition of quality has been extended to more comprehensive level, which also comprises sustainable performance. The paper systematically builds an integrated model that includes quality as well as sustainable performance of the built environment and accompanying construction processes. This model for the “Integrated Quality and Sustainability Performance Assessment in Construction” presents a three-level arrangement, namely: the structure, process/ project, and construction product. We propose a holistic sustainability assessment methodology based on the authors’ previous research work for structures. The strict implementation of quality and environmental management systems in the participating organisations and in the whole construction project guarantees quality and environmental performance at project/process level. On the construction product level, we complement the existing requirement of providing a statement of conformity for each product of the structure with the Environmental Product Declaration (EPD) for all construction products. We use the Life Cycle Assessment (LCA) methodology to obtain the EPDs for specific construction products; in this way, we can evaluate their environmental impacts throughout the life cycle of a product or structure. On the structure level, a model for the integrated sustainability and quality assessment, which was previously proposed by the authors, is employed. Integration of all three levels ensures that the desired plateau of quality and sustainability performance is achieved for structures, processes and products. In the present version, the model is tailored to the specific features of buildings, and the sustainability aspect is limited to the environmental performance. An investigation of measures required to implement the proposed model into practice shows that clients have a major influence upon the procurement rules. Consequently, the targeted audience of potential users is that of clients procuring buildings.


2021 ◽  
Vol 13 (9) ◽  
pp. 4887
Author(s):  
Mulian Zheng ◽  
Wang Chen ◽  
Xiaoyan Ding ◽  
Wenwu Zhang ◽  
Sixin Yu

Preventive maintenance (PM) is regarded as the most economical maintenance strategy for asphalt pavement, but the life cycle environmental impacts (LCEI) of different PM techniques have not yet been comprehensively assessed and compared, thus hindering sustainable PM planning. This study aims to comprehensively estimate and compared the LCEI of five PM techniques then propose measures to reduce environmental impacts in PM design by using life cycle assessment (LCA), including fog seal with sand, micro-surfacing, composite seal, ultra-thin asphalt overlay, and thin asphalt overlay. Afterwards, ten kinds of LCEI categories and energy consumption of PM techniques were compared from the LCA phases, and inventory inputs perspectives, respectively. Results show that fog seal with sand and micro-surfacing can lower all LCEI scores by more than 50%. The environmental performance of five PM techniques provided by sensitivity analysis indicated that service life may not create significant impact on LCA results to some extent. Moreover, four PM combination plans were developed and compared for environmental performance, and results show that the PM plan only includes seal coat techniques that can reduce the total LCEI by 7–29% in pavement life. Increasing the frequency of seal coat techniques can make the PM plans more sustainable.


Author(s):  
S. Kokare ◽  
F. M. A. Asif ◽  
G. Mårtensson ◽  
S. Shoaib-ul-Hasan ◽  
A. Rashid ◽  
...  

AbstractStretchable electronics is a new innovation and becoming popular in various fields, especially in the healthcare sector. Since stretchable electronics use less printed circuit boards (PCBs), it is expected that the environmental performance of a stretchable electronics-based device is better than a rigid electronics-based device that provides the same functionalities. Yet, such a study is rarely available. Thus, the main purpose of this research is to perform a comparative life cycle analysis of stretchable and rigid electronics-based devices. This research combines both the case study approach and the research review approach. For the case study, a cardiac monitoring device with both stretchable and rigid electronics is used. The ISO 14044:2006 standard's prescribed LCA approach and ReCiPe 2016 Midpoint (Hierarchist) are followed for the impact assessment using the SimaPro 9.1 software. The LCA results show that the stretchable cardiac monitoring device has better environmental performance in all eighteen impact categories. This research also shows that the manufacturing process of stretchable electronics has lower environmental impacts than those for rigid electronics. The main reasons for the improved environmental performance of stretchable electronics are lower consumption of raw material as well as decreased energy consumption during manufacturing. Based on the LCA results of a cardiac monitoring device, the study concludes that stretchable electronics and their manufacturing process have better environmental performance in comparison with the rigid electronics and their manufacturing process.


Resonance ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 298-327
Author(s):  
Shuhei Hosokawa

Drawing on Karin Bijsterveld’s triple definition of noise as ownership, political responsibility, and causal responsibility, this article traces how modern Japan problematized noise, and how noise represented both the aspirational discourse of Western civilization and the experiential nuisance accompanying rapid changes in living conditions in 1920s Japan. Primarily based on newspaper archives, the analysis will approach the problematic of noise as it was manifested in different ways in the public and private realms. In the public realm, the mid-1920s marked a turning point due to the reconstruction work after the Great Kantô Earthquake (1923) and the spread of the use of radios, phonographs, and loudspeakers. Within a few years, public opinion against noise had been formed by a coalition of journalists, police, the judiciary, engineers, academics, and municipal officials. This section will also address the legal regulation of noise and its failure; because public opinion was “owned” by middle-class (sub)urbanites, factory noises in downtown areas were hardly included in noise abatement discourse. Around 1930, the sounds of radios became a social problem, but the police and the courts hesitated to intervene in a “private” conflict, partly because they valued radio as a tool for encouraging nationalist mobilization and transmitting announcements from above. In sum, this article investigates the diverse contexts in which noise was perceived and interpreted as such, as noise became an integral part of modern life in early 20th-century Japan.


2019 ◽  
Vol 0 (3) ◽  
pp. 53-60 ◽  
Author(s):  
T.Yu. Altufyeva ◽  
◽  
P.A. Ivanov ◽  
G.R. Sakhapova ◽  
◽  
...  

2020 ◽  
pp. 161-165
Author(s):  
Bertram de Crom ◽  
Jasper Scholten ◽  
Janjoris van Diepen

To get more insight in the environmental performance of the Suiker Unie beet sugar, Blonk Consultants performed a comparative Life Cycle Assessment (LCA) study on beet sugar, cane sugar and glucose syrup. The system boundaries of the sugar life cycle are set from cradle to regional storage at the Dutch market. For this study 8 different scenarios were evaluated. The first scenario is the actual sugar production at Suiker Unie. Scenario 2 until 7 are different cane sugar scenarios (different countries of origin, surplus electricity production and pre-harvest burning of leaves are considered). Scenario 8 concerns the glucose syrup scenario. An important factor in the environmental impact of 1kg of sugar is the sugar yield per ha. Total sugar yield per ha differs from 9t/ha sugar for sugarcane to 15t/ha sugar for sugar beet (in 2017). Main conclusion is that the production of beet sugar at Suiker Unie has in general a lower impact on climate change, fine particulate matter, land use and water consumption, compared to cane sugar production (in Brazil and India) and glucose syrup. The impact of cane sugar production on climate change and water consumption is highly dependent on the country of origin, especially when land use change is taken into account. The environmental impact of sugar production is highly dependent on the co-production of bioenergy, both for beet and cane sugar.


2021 ◽  
Vol 1 ◽  
pp. 1333-1342
Author(s):  
Núria Boix Rodríguez ◽  
Marco Marconi ◽  
Claudio Favi ◽  
Giovanni Formentini

AbstractFace masks are currently considered essential devices that people must wear today and in the near future, until the COVID-19 pandemic will be completely defeated through specific medicines and vaccines. Such devices are generally made of thermoplastic polymers, as polypropylene and polyethylene and are single use products. Even if in this period the sanitary emergency must have the maximum priority, the world society should not completely forget the environmental problem that are causing more and more obvious climate changes with correlated damages to ecosystems and human health. Despite the well-known correlation among anti-COVID protective equipment (or more generally medical devices) and environmental issues, the Life Cycle Assessment (LCA) and eco-design-based studies in this field is very scarce. The present study aims to derive the most important environmental criticalities of such products, by using LCA and product circularity indicators of five different common masks. The final aim is to provide eco-design guidelines, useful to design new face masks by preventing negative impact on the environment.


Sign in / Sign up

Export Citation Format

Share Document