scholarly journals Life cycle assessment and process simulation of prospective battery-grade cobalt sulfate production from Co-Au ores in Finland

Author(s):  
Marja Rinne ◽  
Heini Elomaa ◽  
Mari Lundström

Abstract Purpose The soaring demand for cobalt for lithium-ion batteries has increased interest in the utilization of non-conventional cobalt sources. Such raw materials include complex ores containing minerals such as cobaltite and skutterudite, which, while rare, occur around the world, including in Finland, Canada, and the USA. The goal of this study was to evaluate the cradle-to-gate impacts of cobalt sulfate recovery from unutilized cobalt- and gold-bearing ores with the use of process simulation. Methods A literature analysis was conducted to establish the state-of-the-art processing methods for complex cobalt ores containing significant amounts of gold. The drafted process was simulated using HSC Sim software to obtain a mass and energy balance, which was compiled into a life cycle inventory (LCI). The environmental impact categories (global warming, acidification, eutrophication, ozone depletion, photochemical smog creation, water use) were calculated in GaBi software. Uncertainty regarding the possible future raw material composition was studied, and the simulation was used to investigate process performance and to evaluate the effect of variation in the process parameters on the environmental impact indicators. Results and discussion The results indicated that the main cobalt mineral type (cobaltite, linnaeite) had only minor effects on the evaluated impact categories. With cobaltite-dominated ores (High As case), the global warming potential (GWP) was estimated to be 20.9 kg CO2-eq, of which 12.7 kg CO2-eq was attributed to the hydrometallurgical process. With linnaeite-dominated ores, the equivalent values were 20.4 kg CO2-eq and 11.0 kg CO2-eq. The production of a high grade concentrate was observed to greatly decrease the impacts of the hydrometallurgical process, but the cobalt losses in the beneficiation stage and the mineral processing impacts would likely increase. The simulation showed that there is still potential to improve the cobalt recovery (to approximately 96%), which would also affect the indicator values. Conclusions The impacts were estimated prior to intensive metallurgical testing to determine the possible high impact areas in the process. Based on this, it is suggested that, during hydrometallurgical processing, improved treatment of cobalt-containing wash waters and the optimization of oxygen utilization efficiency in pressure leaching are the most significant ways to decrease the environmental impacts. Optimal solutions for the concentrate could be found when experimental data on the minerals processing steps becomes available.

2021 ◽  
Vol 13 (6) ◽  
pp. 3542
Author(s):  
Hatem Alhazmi ◽  
Abdulilah K. Alduwais ◽  
Thamer Tabbakh ◽  
Saad Aljamlani ◽  
Bandar Alkahlan ◽  
...  

The building and construction sector has a huge impact on the environment because of the enormous amounts of natural resources and energy consumed during the life cycle of construction projects. In this study, we evaluated the potential environmental impact of the construction of a villa, from cradle to grave, in the Saudi Arabian context. Centrum voor Milieukunde Leiden (CML) for Centre of Environmental Science of Leiden University-IA baseline v3.03 methods were used to obtain the environmental profile for the impact categories, and Cumulative Energy Demand v1.09 was used to measure the embodied energy of the villa life cycle. The analyzed midpoint impact categories include global warming (GWP100a), ozone layer depletion (ODP), acidification (AP), eutrophication (EP), photochemical oxidation (POCP), and indicator cumulative energy demand (CED). The operation use phase of the villa was found to have the highest global warming potential and acidification with 2.61 × 106 kg CO2-eq and 1.75 × 104 kg SO2-eq, respectively. Sensitivity analysis was performed on the Saudi Arabian plans to increase the share of renewable sources and reduce the amount of electricity generated from hydrocarbons, which currently represents 46% of the total installed power, by 2032. The results showed that compared with the current electricity environmental impact, the CO2 emission from electricity will decrease by 53%, which represents a significant reduction in environmental impact. The findings will help with the life cycle assessment of structures during future planning and for energy conservation.


2020 ◽  
Vol 76 (3) ◽  
pp. 137-153
Author(s):  
Harnpon Phungrassami ◽  
Phairat Usubharatana

Environmental impacts of fishery production have resulted in increased concern and awareness. Thailand, as one of the largest global fish exporters, faces challenges related to environmental problems caused by fishery processes. Here, the environmental impact of Thai surimi production was estimated based on life cycle assessment (LCA) methodology, focusing specifically on two Thai surimi products made from goatfish and ponyfish caught within the southern region of Thailand. Three impact categories where explored: global warming, acidification and eutrophication. Life cycle impacts were calculated for one kg of product using both mass and economic allocations. Results of this study indicated that goatfish has lower impacts than ponyfish for all the impact categories. Fuel consumption during the fishery phase and electricity consumption during processing were the main parameters leading to most of the considered environmental impacts. The value of Global Warming  Potential(GWP) ranged within 1.3‒3.0 kg CO2eq for goatfish and 2.2‒7.1 kg CO2eq ponyfish depending on the allocation method. The acidification impact of goatfish and ponyfish were revealed at 3.2‒7.3 gSO2eq and 12.7‒39.7 gSO2eq, respectively. The eutrophication of goatfish and ponyfish were 0.7‒1.6 gPO4eq and 2.5‒8.1 gPO4eq, respectively. Sensitivity analysis of fuel consumption, electricity consumption, product yield and allocation method were evaluated.


2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


Author(s):  
Rina Annisa ◽  
Benno Rahardyan

Geothermal potential in Indonesia estimate can produced renewable energy 29 GW, and until 2016 it still used 5% or about 1643 MW in. From that result, about 227 MW produced by Wayang Windu geothermal power plant. The Input were raw material, energy and water. These input produced electricity as main product, by product, and also other output that related to environment i.e. emission, solid waste and waste water. All environmental impacts should be controlled to comply with environmental standard, and even go beyond compliance and perform continual improvement.  This research will use Life Cycle Assessment method based on ISO 14040 and use cradle to gate concept with boundary from liquid steam production until electricity produced, and Megawatt Hours as the functional unit. Life Cycle Inventory has been done with direct input and output in the boundary and resulted that subsystem of Non Condensable Gas and condensate production have the largest environmental impact. LCI also show that every MWh electricity produced, it needed 6.87 Ton dry steam or 8.16 Ton liquid steam. Global Warming Potential (GWP) value is 0.155 Ton CO2eq./MWh, Acidification Potential (AP) 1.69 kg SO2eq./MWh, Eutrophication Potential (EP) 5.36 gPO4 eq./MWh and land use impacts 0.000024 PDF/m2. Life Cycle Impact Assessment resulted that AP contribute 78% of environmental impact and 98% resulted from H2S Non Condensable Gas. Comparison results with another dry steam geothermal power plant show that impact potential result of the company in good position and there’s a strong relation between gross production, GWP and AP value.Keywords: Life cycle assessment; Geothermal; Continual Improvement; Global Warming Potential; Acidification Potential


2019 ◽  
Vol 944 ◽  
pp. 1137-1143 ◽  
Author(s):  
Ke Wei Lu ◽  
Xian Zheng Gong ◽  
Bo Xue Sun ◽  
Qing Ding

Tungsten is an important strategic metal, widely used in cemented carbide manufacturing, steel industry, and other economic fields. The amount of tungsten resource consumed in China each year accounts for more than 80% of the world’s annual total consumption. The purpose of this study is to quantify the environmental impact of tungsten production in China through the method of LCA. The result shows that, regarding the contributions of impact categories, the normalized value of HTP is the largest one among various impact categories, which accounts for 35.39% of the total environmental impact, followed by AP, PMFP, GWP, MDP, FDP, and POFP, respectively. The results also show that, regarding the contributions of production processes, smelting process is the largest contributor to the environmental burden of tungsten production due to the crystallization and calcination reduction occurred in the smelting process consumes a large amount of electricity, followed by mining, beneficiation, and transportation, respectively. The major academic contribution of this paper to the existing literatures is that we employed process-based analysis method, which could improve the accuracy of the study and provide practical advices for tungsten enterprises to reduce the environmental impact.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2018 ◽  
Vol 85 (3) ◽  
pp. 396-399 ◽  
Author(s):  
William Finnegan ◽  
Jamie Goggins ◽  
Xinmin Zhan

This Research Communication describes the methodology used and the subsequent results obtained for an assessment of the environmental impact associated with the manufacture of dairy products in the Republic of Ireland. As the Irish dairy industry changes and grows, it is necessary to have a benchmark of the environmental performance of the sector if it is to remain sustainable in the future. In order to estimate the environmental impact, life cycle assessment has been implemented, which has been structured in accordance with the International Organisation for Standardisation guidelines. In this study, the environmental impact categories assessed are terrestrial acidification potential, cumulative energy demand, freshwater eutrophication potential, global warming potential, marine eutrophication potential and water depletion. The main Irish dairy products have been compared across these environmental impact categories in order to derive meaningful results. It is identified that packaging materials, particularly for infant formula, and energy usage, across each of the life cycle stages, should be targeted as these are the most significant contributors to the overall environmental impact.


2019 ◽  
Vol 25 (3) ◽  
pp. 456-477 ◽  
Author(s):  
Heini Elomaa ◽  
Pia Sinisalo ◽  
Lotta Rintala ◽  
Jari Aromaa ◽  
Mari Lundström

Abstract Purpose Currently, almost all cyanide-free gold leaching processes are still in the development stage. Proactively investigating their environmental impacts prior to commercialization is of utmost importance. In this study, a detailed refractory gold concentrate process simulation with mass and energy balance was built for state-of-the-art technology with (i) pressure oxidation followed by cyanidation and, compared to alternative cyanide-free technology, with (ii) pressure oxidation followed by halogen leaching. Subsequently, the simulated mass balance was used as life cycle inventory data in order to evaluate the environmental impacts of the predominant cyanidation process and a cyanide-free alternative. Methods The environmental indicators for each scenario are based on the mass balance produced with HSC Sim steady-state simulation. The simulated mass balances were evaluated to identify the challenges in used technologies. The HSC Sim software is compatible with the GaBi LCA software, where LCI data from HSC-Sim is directly exported to. The simulation produces a consistent life cycle inventory (LCI). In GaBi LCA software, the environmental indicators of global warming potential (GWP), acidification potential (AP), terrestrial eutrophication potential (EP), and water depletion (Water) are estimated. Results and discussion The life cycle assessment revealed that the GWP for cyanidation was 10.1 t CO2-e/kg Au, whereas the halogen process indicated a slightly higher GWP of 12.6 t CO2-e/kg Au. The difference is partially explained by the fact that the footprint is calculated against produced units of Au; total recovery by the halogen leaching route for gold was only 87.3%, whereas the cyanidation route could extract as much as 98.5% of gold. The addition of a second gold recovery unit to extract gold also from the washing water in the halogen process increased gold recovery up to 98.5%, decreasing the GWP of the halogen process to 11.5 t CO2-e/kg Au. However, both evaluated halogen processing scenarios indicated a slightly higher global warming potential when compared to the dominating cyanidation technology. Conclusions The estimated environmental impacts predict that the development-stage cyanide-free process still has some challenges compared to cyanidation; as in the investigated scenarios, the environmental impacts were generally higher for halogen leaching. Further process improvements, for example in the form of decreased moisture in the feed for halide leaching, and the adaptation of in situ gold recovery practices in chloride leaching may give the cyanide-free processing options a competitive edge.


2020 ◽  
Vol 25 (11) ◽  
pp. 2190-2203 ◽  
Author(s):  
J. Sillman ◽  
V. Uusitalo ◽  
V. Ruuskanen ◽  
L. Ojala ◽  
H. Kahiluoto ◽  
...  

Abstract Purpose Renewable energy produced from wind turbines and solar photovoltaics (PV) has rapidly increased its share in global energy markets. At the same time, interest in producing hydrocarbons via power-to-X (PtX) approaches using renewables has grown as the technology has matured. However, there exist knowledge gaps related to environmental impacts of some PtX approaches. Power-to-food (PtF) application is one of those approaches. To evaluate the environmental impacts of different PtF approaches, life cycle assessment was performed. Methods The theoretical environmental potential of a novel concept of PtX technologies was investigated. Because PtX approaches have usually multiple technological solutions, such as the studied PtF application can have, several technological setups were chosen for the study. PtF application is seen as potentially being able to alleviate concerns about the sustainability of the global food sector, for example, as regards the land and water use impacts of food production. This study investigated four different environmental impact categories for microbial protein (MP) production via different technological setups of PtF from a cradle-to-gate perspective. The investigated impact categories include global warming potential, blue-water use, land use, and eutrophication. The research was carried out using a life cycle impact assessment method. Results and discussion The results for PtF processes were compared with the impacts of other MP production technologies and soybean production. The results indicate that significantly lower environmental impact can be achieved with PtF compared with the other protein production processes studied. The best-case PtF technology setups cause considerably lower land occupation, eutrophication, and blue-water consumption impacts compared with soybean production. However, the energy source used and the electricity-to-biomass efficiency of the bioreactor greatly affect the sustainability of the PtF approach. Some energy sources and technological choices result in higher environmental impacts than other MP and soybean production. When designing PtF production facilities, special attention should thus be given to the technology used. Conclusions With some qualifications, PtF can be considered an option for improving global food security at minimal environmental impact. If the MP via the introduced application substitutes the most harmful practices of production other protein sources, the saved resources could be used to, for example, mitigation purposes or to improve food security elsewhere. However, there still exist challenges, such as food safety–related issues, to be solved before PtF application can be used for commercial use.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


Sign in / Sign up

Export Citation Format

Share Document