scholarly journals A life cycle environmental sustainability analysis of microbial protein production via power-to-food approaches

2020 ◽  
Vol 25 (11) ◽  
pp. 2190-2203 ◽  
Author(s):  
J. Sillman ◽  
V. Uusitalo ◽  
V. Ruuskanen ◽  
L. Ojala ◽  
H. Kahiluoto ◽  
...  

Abstract Purpose Renewable energy produced from wind turbines and solar photovoltaics (PV) has rapidly increased its share in global energy markets. At the same time, interest in producing hydrocarbons via power-to-X (PtX) approaches using renewables has grown as the technology has matured. However, there exist knowledge gaps related to environmental impacts of some PtX approaches. Power-to-food (PtF) application is one of those approaches. To evaluate the environmental impacts of different PtF approaches, life cycle assessment was performed. Methods The theoretical environmental potential of a novel concept of PtX technologies was investigated. Because PtX approaches have usually multiple technological solutions, such as the studied PtF application can have, several technological setups were chosen for the study. PtF application is seen as potentially being able to alleviate concerns about the sustainability of the global food sector, for example, as regards the land and water use impacts of food production. This study investigated four different environmental impact categories for microbial protein (MP) production via different technological setups of PtF from a cradle-to-gate perspective. The investigated impact categories include global warming potential, blue-water use, land use, and eutrophication. The research was carried out using a life cycle impact assessment method. Results and discussion The results for PtF processes were compared with the impacts of other MP production technologies and soybean production. The results indicate that significantly lower environmental impact can be achieved with PtF compared with the other protein production processes studied. The best-case PtF technology setups cause considerably lower land occupation, eutrophication, and blue-water consumption impacts compared with soybean production. However, the energy source used and the electricity-to-biomass efficiency of the bioreactor greatly affect the sustainability of the PtF approach. Some energy sources and technological choices result in higher environmental impacts than other MP and soybean production. When designing PtF production facilities, special attention should thus be given to the technology used. Conclusions With some qualifications, PtF can be considered an option for improving global food security at minimal environmental impact. If the MP via the introduced application substitutes the most harmful practices of production other protein sources, the saved resources could be used to, for example, mitigation purposes or to improve food security elsewhere. However, there still exist challenges, such as food safety–related issues, to be solved before PtF application can be used for commercial use.

2021 ◽  
Vol 13 (5) ◽  
pp. 2898
Author(s):  
Rakhyun Kim ◽  
Myung-Kwan Lim ◽  
Seungjun Roh ◽  
Won-Jun Park

This study analyzed the characteristics of the environmental impacts of apartment buildings, a typical housing type in South Korea, as part of a research project supporting the streamlined life cycle assessment (S-LCA) of buildings within the G-SEED (Green Standard for Energy and Environmental Design) framework. Three recently built apartment building complexes were chosen as study objects for the quantitative evaluation of the buildings in terms of their embodied environmental impacts (global warming potential, acidification potential, eutrophication potential, ozone layer depletion potential, photochemical oxidant creation potential, and abiotic depletion potential), using the LCA approach. Additionally, we analyzed the emission trends according to the cut-off criteria of the six environmental impact categories by performing an S-LCA with cut-off criteria 90–99% of the cumulative weight percentile. Consequently, we were able to present the cut-off criterion best suited for S-LCA and analyze the effect of the cut-off criteria on the environmental impact analysis results. A comprehensive environmental impact analysis of the characteristics of the six environmental impact categories revealed that the error rate was below 5% when the cut-off criterion of 97.5% of the cumulative weight percentile was applied, thus verifying its validity as the optimal cut-off criterion for S-LCA.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


2021 ◽  
Vol 11 (3) ◽  
pp. 1160
Author(s):  
Antonella Accardo ◽  
Giovanni Dotelli ◽  
Marco Luigi Musa ◽  
Ezio Spessa

This paper presents the results of an environmental assessment of a Nickel-Manganese-Cobalt (NMC) Lithium-ion traction battery for Battery Electric Light-Duty Commercial Vehicles (BEV-LDCV) used for urban and regional freight haulage. A cradle-to-grave Life Cycle Inventory (LCI) of NMC111 is provided, operation and end-of-life stages are included, and insight is also given into a Life Cycle Assessment of different NMC chemistries. The environmental impacts of the manufacturing stages of the NMC111 battery are then compared with those of a Sodium-Nickel-Chloride (ZEBRA) battery. In the second part of the work, two electric-battery LDCVs (powered with NMC111 and ZEBRA batteries, respectively) and a diesel urban LDCV are analysed, considering a wide set of environmental impact categories. The results show that the NMC111 battery has the highest impacts from production in most of the impact categories. Active cathode material, Aluminium, Copper, and energy use for battery production are the main contributors to the environmental impact. However, when vehicle application is investigated, NMC111-BEV shows lower environmental impacts, in all the impact categories, than ZEBRA-BEV. This is mainly due to the greater efficiency of the NMC111 battery during vehicle operation. Finally, when comparing BEVs to a diesel LDCV, the electric powertrains show advantages over the diesel one as far as global warming, abiotic depletion potential-fossil fuels, photochemical oxidation, and ozone layer depletion are concerned. However, the diesel LDCV performs better in almost all the other investigated impact categories.


2015 ◽  
Vol 4 (2) ◽  
pp. 51 ◽  
Author(s):  
Gokhan Egilmez ◽  
Yong Park

<p class="emsd0505"><span lang="EN-GB">Sustainable transportation is an inevitable component of sustainable development intitiatives for mitigating the climate change impacts and stabilizing the rising carbon emissions thus global temperature. In this context, comprehensive analysis of the environmental impact of transportation can play a critical role towards quantifying the midpoint environmental and human health related impacts associated with the transportation activities triggered by manufacturing sectors. This study traces the life cycle impact of the U.S. transportation and manufacturing sectors’ nexus using Tool for the Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) in the context of the Economic Input-Output Life Cycle Assessment (EIO-LCA) framework considering the following midpoint impact categories: ‘global warming’, ‘particulate matter’, ‘eutrophication’, ‘acidification’, and ‘smog air’. Both direct (onsite) and indirect (supply chain) industries’ relationships with transportation industry are considered as the main scope. Results indicated that top ten contributor manufacturing sectors accounted for over 55% total environmental impacts on each impact category. Additionally, based on the decomposition analysis, food manufacturing sector was found to be the major contributor to smog air with an approximate share of 21% in the entire supply chain. Automobile related manufacturing sectors also have significant impact on all five life cycle impact categories that the environmental impact of transportation is higher than on-site (direct) impact. Overall decomposition analysis of 53 manufacturing sector indicated that the environmental impact of transportation has severe effects on ‘smog air’, ‘eutrophication’ and ‘acidification’ with a share of 16.4%, 10.5%, and 6.0%, respectively. When we consider the average percentage share of transportation related environmental impact on the entire supply chain, U.S manufacturing sectors have a negative impact with a share of 18.8% of ‘smog air’, 16.8% for ‘eutrophication’, and 8.1% for ‘acidification’. </span></p>


2020 ◽  
Vol 76 (3) ◽  
pp. 137-153
Author(s):  
Harnpon Phungrassami ◽  
Phairat Usubharatana

Environmental impacts of fishery production have resulted in increased concern and awareness. Thailand, as one of the largest global fish exporters, faces challenges related to environmental problems caused by fishery processes. Here, the environmental impact of Thai surimi production was estimated based on life cycle assessment (LCA) methodology, focusing specifically on two Thai surimi products made from goatfish and ponyfish caught within the southern region of Thailand. Three impact categories where explored: global warming, acidification and eutrophication. Life cycle impacts were calculated for one kg of product using both mass and economic allocations. Results of this study indicated that goatfish has lower impacts than ponyfish for all the impact categories. Fuel consumption during the fishery phase and electricity consumption during processing were the main parameters leading to most of the considered environmental impacts. The value of Global Warming  Potential(GWP) ranged within 1.3‒3.0 kg CO2eq for goatfish and 2.2‒7.1 kg CO2eq ponyfish depending on the allocation method. The acidification impact of goatfish and ponyfish were revealed at 3.2‒7.3 gSO2eq and 12.7‒39.7 gSO2eq, respectively. The eutrophication of goatfish and ponyfish were 0.7‒1.6 gPO4eq and 2.5‒8.1 gPO4eq, respectively. Sensitivity analysis of fuel consumption, electricity consumption, product yield and allocation method were evaluated.


2014 ◽  
Vol 935 ◽  
pp. 293-296 ◽  
Author(s):  
Saniye Karaman Oztas ◽  
Leyla Tanacan

Life Cycle Impact Assessment (LCIA) is a phase of the Life Cycle Assessment (LCA) in order to quantify various environmental impacts based on the inventory analysis. Weighting although is not the mandatory element of LCIA is the element in which local data becomes important. Potential environmental impacts and the importance of particular impacts can be quite significant among the countries or regions. Determination of the importance degree is possible by weighting of the selected environmental impact categories. Therefore, this study aimed to develop local weighting factors (WFs) by taking the environmental issues into consideration for the building materials produced in Turkey. And 11 environmental impact categories such as global warming, ozone depletion, acidification, photochemical ozone formation, eutrophication, fossil fuel depletion, mineral resource depletion, water depletion, land use, indoor air quality and waste were selected considering environmental impacts caused by the building materials and environmental issues in Turkey. And WFs of these categories for Turkey were determined by using a panel approach. Thus, it can be possible to assess environmental impacts of building materials by using local data.


2016 ◽  
Vol 106 (03) ◽  
pp. 136-140
Author(s):  
R. Miehe ◽  
M. Wiedenmann ◽  
T. Prof. Bauernhansl

Die Ökobilanz hat sich als Instrument zur Bewertung der Umweltauswirkungen von Produkten und Prozessen durchgesetzt. Dennoch stellt ihre Durchführung Nutzer immer wieder vor Herausforderungen. Der Fachartikel präsentiert einen Ansatz für eine vergleichende Betrachtung der ökologischen Auswirkungen des unternehmerischen Handelns auf Basis der jeweiligen Unternehmens- und Branchenumsätze. Der Umsatz-Nachhaltigkeitsindex soll als Konzept für ein Benchmark für Unternehmen einer Branche dienen. &nbsp; Life Cycle Assessment has prevailed as an instrument to evaluate the environmental impact of products and processes. Its execution, however, poses a challenge to operators. In this paper, we present an approach for a comparative examination of environmental impacts of industrial behavior based on the turnover of companies and their equivalent sectors. The Turnover-Sustainability-Index serves as a benchmark for companies within a sector.


Author(s):  
Alma Delia Delia Román Gutiérrez ◽  
Juan Hernandez Avila ◽  
Antonia Karina Vargas M. ◽  
Eduardo Cerecedo Saenz ◽  
Eleazar Salinas-Rodríguez

Usually in the manufacture of beer by fermentation of barley, in both industrialized and developing countries significant amounts of organic solid waste are produced from barley straw. These possibly have an impact on the carbon footprint with an effect on global warming. According to this, it is important to reduce environmental impact of these solid residues, and an adequate way is the recycling using them as raw material for the elaboration of handmade paper. Therefore, it is required to manage this type of waste by analyzing the environmental impact, and thus be able to identify sustainable practices for the treatment of this food waste, evaluating its life cycle, which is a useful methodology to estimate said environmental impacts. It is because of this work shows the main results obtained using the life cycle analysis (LCA) methodology, to evaluate the possible environmental impacts during the waste treatment of a brewery located in the state of Hidalgo, Mexico. The residues evaluated were barley straw, malt residues and spent grain, and at the end, barley straw was selected to determine in detail its environmental impact and its reuse, the sheets analyzed presented a grammage that varies from 66 g/m2 and 143 g/m2, resistance to burst was 117 to 145 kpa, with a crystallinity of 34.4% to 37.1%.


OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


Sign in / Sign up

Export Citation Format

Share Document