Design, synthesis and evaluation of spermine-based pH-sensitive amphiphilic gene delivery systems: Multifunctional non-viral gene carriers

2011 ◽  
Vol 54 (2) ◽  
pp. 359-368 ◽  
Author(s):  
RongZuo Xu ◽  
Zheng-Rong Lu
MedChemComm ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 264-274 ◽  
Author(s):  
Venkanna Muripiti ◽  
Brijesh Lohchania ◽  
Srujan Kumar Marepally ◽  
Srilakshmi V. Patri

Receptor mediated gene delivery to the liver offers advantages in treating genetic disorders such as hemophilia and hereditary tyrosinemia type I (HTI).


2014 ◽  
Vol 68 (6) ◽  
pp. 775-783 ◽  
Author(s):  
Carolina Carrillo ◽  
Josep Maria Suñé ◽  
Pilar Pérez-Lozano ◽  
Encarna García-Montoya ◽  
Rocío Sarrate ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 6-13 ◽  
Author(s):  
Kiel Sung Yong ◽  
◽  
Wan Kim Sung ◽  
◽  
◽  
...  

Gene therapy is the unique method for the use of genetic materials such as Messenger ribonucleic acid (mRNA), plasmid deoxyribonucleic acid (pDNA), and small interfering ribonucleic acid (siRNA) into specific host-cells for the treatment of inherited disorders in any diseases. The successful way to utilize the gene therapy is to develop the efficient cancer gene delivery systems. In this paper, the successful and efficient gene delivery systems are briefly reviewed on the basis of bio-reducible polymeric systems for cancer therapy. The viral gene delivery systems such as RNA-based viral and DNA-based viral vectors are also discussed. The development of bio-reducible polymer for gene delivery system has briefly discussed for the efficient cancer gene delivery of viral vectors and non-viral vectors.


Author(s):  
Mehrnoosh Kazemi Ashtiyani ◽  
Behnam Hajipour-Verdom ◽  
Mohammad Satari ◽  
Parviz Abdolmaleki ◽  
Saman Hosseinkhani

Non-viral gene carriers because of their limited side effects, biocompatibility, simplicity and taking the advantages of electrostatic interactions have shown noticeable potential in gene delivery. The low transfection rate of non-viral vectors under physiological conditions is a significant issue. Here, the aim of this study was to investigate the efficacy of hydrophilic and hydrophobic groups on gene carriers such as two synthesized amphiphilic polymer of dextran-stearic acid-spermine (DSASP) with verified lipid and amine conjugations that associated with Fe3O4 superparamagnetic nanoparticles to promote the target delivery and decrease the transfection time using static magnetic field. Our findings illustrate that magnetic nanoparticles are spherical with positive surface charges and superparamagnetic behaviors. The DSASP–pDNA/MNPs offered a strong pDNA condensation, protection against DNase degradation, significant cell viability in HEK 293T cells and. Although conjugations of spermine play a critical role in transfection efficiency, amphiphilic polymer with more derivatives of stearic acid showed better transfection yields. Therefore, DSASP amphiphilic magnetic carriers offer new insights for gene delivery due to the amine contents and ameliorate the uptake of complexes via cell membrane based on its hydrophilic surface.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 745 ◽  
Author(s):  
Raj Rai ◽  
Saniya Alwani ◽  
Ildiko Badea

The field of polymeric nanoparticles is quickly expanding and playing a pivotal role in a wide spectrum of areas ranging from electronics, photonics, conducting materials, and sensors to medicine, pollution control, and environmental technology. Among the applications of polymers in medicine, gene therapy has emerged as one of the most advanced, with the capability to tackle disorders from the modern era. However, there are several barriers associated with the delivery of genes in the living system that need to be mitigated by polymer engineering. One of the most crucial challenges is the effectiveness of the delivery vehicle or vector. In last few decades, non-viral delivery systems have gained attention because of their low toxicity, potential for targeted delivery, long-term stability, lack of immunogenicity, and relatively low production cost. In 1987, Felgner et al. used the cationic lipid based non-viral gene delivery system for the very first time. This breakthrough opened the opportunity for other non-viral vectors, such as polymers. Cationic polymers have emerged as promising candidates for non-viral gene delivery systems because of their facile synthesis and flexible properties. These polymers can be conjugated with genetic material via electrostatic attraction at physiological pH, thereby facilitating gene delivery. Many factors influence the gene transfection efficiency of cationic polymers, including their structure, molecular weight, and surface charge. Outstanding representatives of polymers that have emerged over the last decade to be used in gene therapy are synthetic polymers such as poly(l-lysine), poly(l-ornithine), linear and branched polyethyleneimine, diethylaminoethyl-dextran, poly(amidoamine) dendrimers, and poly(dimethylaminoethyl methacrylate). Natural polymers, such as chitosan, dextran, gelatin, pullulan, and synthetic analogs, with sophisticated features like guanidinylated bio-reducible polymers were also explored. This review outlines the introduction of polymers in medicine, discusses the methods of polymer synthesis, addressing top down and bottom up techniques. Evaluation of functionalization strategies for therapeutic and formulation stability are also highlighted. The overview of the properties, challenges, and functionalization approaches and, finally, the applications of the polymeric delivery systems in gene therapy marks this review as a unique one-stop summary of developments in this field.


Sign in / Sign up

Export Citation Format

Share Document