Simulation of three-dimensional nonideal MHD flow at low magnetic Reynolds number

2009 ◽  
Vol 52 (12) ◽  
pp. 3690-3697 ◽  
Author(s):  
HaoYu Lu ◽  
ChunHian Lee
1980 ◽  
Vol 96 (2) ◽  
pp. 335-353 ◽  
Author(s):  
Richard J. Holroyd

A theoretical and experimental study has been carried out on the flow of a liquid metal along a straight rectangular duct, whose pairs of opposite walls are highly conducting and insulating, situated in a planar non-uniform magnetic field parallel to the conducting walls. Magnitudes of the flux density and mean velocity are taken to be such that the Hartmann numberMand interaction parameterNhave very large values and the magnetic Reynolds number is extremely small.The theory qualitatively predicts the integral features of the flow, namely the distributions along the duct of the potential difference between the conducting walls and the pressure. The experimental results indicate that the velocity profile is severely distorted by regions of non-uniform magnetic field with fluid moving towards the conducting walls; even though these walls are very good conductors the flow behaves more like that in a non-conducting duct than that predicted for a duct with perfectly conducting side walls.


2014 ◽  
Vol 525 ◽  
pp. 247-250
Author(s):  
Jie Mao ◽  
Ke Liu ◽  
Hua Chen Pan

A steady state magnetohydrodynamic laminar solver with low magnetic Reynolds number has been developed in OpenFOAM platform. SIMPLE method has been used to solve the velocity vector and pressure. The induced electric potential and induced electric current has been solved according to a consistent and conservative scheme on a collocated structure grid. The solver has been validated by simulating Shercliff's case with medium Hartmann number. The results show that the numerical solution results match the analytical solutions well.


2015 ◽  
Vol 773 ◽  
pp. 154-177 ◽  
Author(s):  
Basile Gallet ◽  
Charles R. Doering

We investigate the behaviour of flows, including turbulent flows, driven by a horizontal body force and subject to a vertical magnetic field, with the following question in mind: for a very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2-D, with no dependence along the vertical direction? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number, $\mathit{Rm}\ll 1$: we prove that the flow becomes exactly 2-D asymptotically in time, regardless of the initial condition and provided that the interaction parameter $N$ is larger than a threshold value. We call this property absolute two-dimensionalization: the attractor of the system is necessarily a (possibly turbulent) 2-D flow. We then consider the full magnetohydrodynamic (MHD) equations and prove that, for low enough $\mathit{Rm}$ and large enough $N$, the flow becomes exactly 2-D in the long-time limit provided the initial vertically dependent perturbations are infinitesimal. We call this phenomenon linear two-dimensionalization: the (possibly turbulent) 2-D flow is an attractor of the dynamics, but it is not necessarily the only attractor of the system. Some 3-D attractors may also exist and be attained for strong enough initial 3-D perturbations. These results shed some light on the existence of a dissipation anomaly for MHD flows subject to a strong external magnetic field.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Saima Riasat ◽  
Muhammad Ramzan ◽  
Seifedine Kadry ◽  
Yu-Ming Chu

Abstract The remarkable aspects of carbon nanotubes like featherweight, durability, exceptional electrical and thermal conduction capabilities, and physicochemical stability make them desirous materials for electrochemical devices. Having such astonishing characteristics of nanotubes in mind our aspiration is to examine the squeezing three dimensional Darcy–Forchheimer hydromagnetic nanofluid thin-film flow amid two rotating disks with suspended multiwalled carbon nanotubes (MWCNTs) submerged into the base fluid water. The analysis is done by invoking partial slip effect at the boundary in attendance of autocatalytic reactions. The mathematical model consists of axial and azimuthal momentum and magnetic fields respectively. The tangential and axial velocity profiles and components of the magnetic field are examined numerically by employing the bvp4c method for varying magnetic, rotational, and squeezing Reynolds number. The torque effect near the upper and lower disks are studied critically using their graphical depiction. The values of the torque at the upper and lower disks are obtained for rotational and squeezed Reynolds numbers and are found in an excellent concurrence when compared with the existing literature. Numerically it is computed that the torque at the lower disk is higher in comparison to the upper disk for mounting estimates of the squeezed Reynolds number and the dimensionless parameter for magnetic force in an axial direction. From the graphical illustrations, it is learned that thermal profile declines for increasing values of the squeezed Reynolds number.


2007 ◽  
Vol 574 ◽  
pp. 131-154 ◽  
Author(s):  
A. VOROBEV ◽  
O. ZIKANOV

Instability and transition to turbulence in a temporally evolving free shear layer of an electrically conducting fluid affected by an imposed parallel magnetic field is investigated numerically. The case of low magnetic Reynolds number is considered. It has long been known that the neutral disturbances of the linear problem are three-dimensional at sufficiently strong magnetic fields. We analyse the details of this instability solving the generalized Orr–Sommerfeld equation to determine the wavenumbers, growth rates and spatial shapes of the eigenmodes. The three-dimensional perturbations are identified as oblique waves and their properties are described. In particular, we find that at high hydrodynamic Reynolds number, the effect of the strength of the magnetic field on the fastest growing perturbations is limited to an increase of their oblique angle. The dimensions and spatial shape of the waves remain unchanged. The transition to turbulence triggered by the growing oblique waves is investigated in direct numerical simulations. It is shown that initial perturbations in the form of superposition of two symmetric waves are particularly effective in inducing three-dimensionality and turbulence in the flow.


2010 ◽  
Vol 655 ◽  
pp. 174-197 ◽  
Author(s):  
ALBAN POTHÉRAT ◽  
VITALI DYMKOU

We present a new spectral method for the direct numerical simulation of magnetohydrodynamic turbulence at low magnetic Reynolds number. The originality of our approach is that instead of using traditional bases of functions, it relies on the basis of eigenmodes of the dissipation operator, which represents viscous and Joule dissipation. We apply this idea to the simple case of a periodic domain in the three directions of space, with a homogeneous magnetic field in the ez direction. The basis is then still a subset of the Fourier space, but ordered by growing linear decay rate |λ| (i.e. according to the least dissipative modes). We show that because the lines of constant energy tend to follow those of constant |λ| in the Fourier space, the scaling for the smallest scales |λmax| in a forced flow can be expressed, using this single parameter, as a function of the Reynolds number as $\(\sqrt{1\lambda^{max}|}/(2\upi k_f)\simeq 0.5\Rey^{1/2}\)$, where kf is the forcing wavelength, or as a function of the Grashof number Gf, which gives a non-dimensional measure of the forcing, as |λmax|1/2/(2πkf) ≃ 0.47Gf0.20. This scaling is also found to be consistent with heuristic scalings derived by Alemany et al. (J. Mec., vol. 18, 1979, pp. 277–313) and Pothérat & Alboussière (Phys. Fluids, vol. 15, 2003, pp. 3170–3180) for interaction parameter S ≳ 1, and which we are able to numerically quantify as k⊥max/kf ≃ 0.5Re1/2 and kzmax/kf ≃ 0.8kfRe/Ha. Finally, we show that the set of least dissipative modes gives a relevant prediction for the scale of the first three-dimensional structure to appear in a forced, initially two-dimensional turbulent flow. This completes our numerical demonstration that the least dissipative modes can be used to simulate both two- and three-dimensional low-Rm magnetohydrodynamic (MHD) flows.


Sign in / Sign up

Export Citation Format

Share Document