Precise determination of the α→α+β phase transformation temperature of Zr-1.0Sn-0.3Nb-0.3Fe alloy

2012 ◽  
Vol 56 (1) ◽  
pp. 60-65 ◽  
Author(s):  
RiSheng Qiu ◽  
BaiFeng Luan ◽  
LinJiang Chai ◽  
XiYan Zhang ◽  
Qing Liu
Refractories ◽  
1969 ◽  
Vol 10 (5-6) ◽  
pp. 314-315
Author(s):  
Yu. A. Kocherzhinskii ◽  
E. A. Shishkin ◽  
L. M. Yupko

2007 ◽  
Vol 127 ◽  
pp. 91-96 ◽  
Author(s):  
Lin Geng ◽  
Bin Xu ◽  
Y.T. Li ◽  
Ai Bin Li ◽  
Gui Song Wang

(α+β)/β phase transformation temperature of a TC11 titanium alloy was confirmed to be 1035°C, which was obtained by three methods including the calculation method, differential scanning calorimetry and metallographic techniques. Based on this result, annealing treatments below and above the (α+β)/β phase transformation temperature were carried out, and the microstructure of the TC11 alloys before and after annealing treatment was analyzed by SEM. The result showed that conventional annealing below 1035°C does not change the Widmanstaten structure of TC11 alloy, though the thickness of α lamellar structure becomes thicker with increasing the annealing temperature. The microstructure of the TC11 alloy treated by annealing above the α+β/β transformation temperature is non-uniform because of the different forming temperature and growing duration of α phase in the TC11 alloy.


2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


2011 ◽  
Vol 320 ◽  
pp. 359-362
Author(s):  
Kai Sheng Wang ◽  
Ru Hui He ◽  
Zhi Min Zhao

In this study, the ultrasonic PZT transducers were used for exciting and receiving Lamb waves on NiTi alloy sheet. Lamb waves were measured when the temperature of the NiTi alloy changed. Analysis on frequency spectrums of the Lamb waves was also done. Some marked changes were observed in the dependence of the waveforms and the frequency spectrums of the Lamb waves versus temperature during phase transformation of NiTi alloy. The results show that phase transformation temperature of NiTi alloy sheet may be examined by Lamb wave method.


2017 ◽  
Vol 53 (3) ◽  
pp. 391-398 ◽  
Author(s):  
O. Martiník ◽  
B. Smetana ◽  
J. Dobrovská ◽  
A. Kalup ◽  
S. Zlá ◽  
...  

The study deals with precise determination of phase transformation temperatures of steel. A series of experimental measurements were carried out by Differential Thermal Analysis (DTA) and Direct Thermal Analysis (TA) to obtain temperatures very close to the equilibrium temperatures. There are presented results from the high temperatures region, above 1000?C, with focus on the solidus temperatures (TS), peritectic transition (TP) and liquidus (TL) of multicomponent steels. The data obtained were verified by statistical evaluation and compared with computational thermodynamic and empirical calculations. The calculations were performed using 15 empirical equations obtained by literature research (10 for TL and 5 for TS), as well as by software InterDendritic Solidification (IDS) and Thermo-Calc (2015b, TCFE8; TC). It was verified that both thermo-analytical methods used are set correctly; the results are reproducible, comparable and close to equilibrium state.


Sign in / Sign up

Export Citation Format

Share Document