scholarly journals MSH2 is required for cell proliferation, cell cycle control and cell invasiveness in colorectal cancer cells

2012 ◽  
Vol 57 (20) ◽  
pp. 2580-2585
Author(s):  
Kai Shen ◽  
YingJiang Ye ◽  
KeWei Jiang ◽  
Bin Liang ◽  
XiaoDong Yang ◽  
...  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kai Li ◽  
Jieling Zhang ◽  
Mingkang Zhang ◽  
Yaohua Wu ◽  
Xinyu Lu ◽  
...  

Abstract Background MicroRNAs (miRNAs) play an important role in tumor occurrence. The role of miR-378a-5p and CDK1 in colorectal cancer (CRC) was investigated in this study. Methods Investigation of TCGA database and the detection of miR-378a-5p expression in colorectal cancer pathological tissues and colorectal cancer cell lines were undertaken by using qRT-PCR. We performed cell function experiments (CCK-8 assay, EdU assay, colony formation assay, wound healing assay, transwell assay, cell apoptosis assessment, and cell cycle assessment) and nude mouse tumor formation experiments to evaluate the effects of miR-378a-5p on proliferation, metastasis, and invasion to explore the role of miR-378a-5p in vivo and in vitro. Next, through TCGA database, immunohistochemical staining of pathological tissues, and cell function experiments, the role of the target gene CDK1 of miR-378a-5p was verified by database prediction, and dual luciferase reporter gene experiments in colorectal cancer cells were performed. Finally, whether upregulation of CDK1 restores the inhibitory effect of overexpression of miR-378a-5p on the proliferation of CRC cells was studied by overexpression of CDK1. Results Bioinformatic analysis showed significant downregulation of miR-378a-5p levels in colorectal cancer (CRC). Cell function experiments and tumor xenograft mouse models confirmed the low expression of miR-378a-5p within CRC tissues, which indicated the tumor suppressive role of miR-378a-5p in CRC. To better explore the regulation of miR-378a-5p in CRC, we predicted and validated cell cycle-dependent protein kinase 1 (CDK1) as the miR-378a-5p target gene and observed that miR-378a-5p suppressed CRC cell proliferation by targeting CDK1. Conclusion The results of this study help to elucidate the mechanism by which miR-378a-5p can be used as a tumor marker to inhibit the growth of colorectal cancer and CDK1, which is related to the prognosis of colorectal cancer patients. MiR-378a-5p inhibits CRC cell proliferation by suppressing CDK1 expression, which may become a possible therapeutic target for treatment of CRC.


Author(s):  
Wenxin Mu ◽  
Yiqun Jia ◽  
Xiaobing Chen ◽  
Haoyu Li ◽  
Zhi Wang ◽  
...  

Porphyromonas gingivalis (P. gingivalis) is a keystone pathogen in periodontitis. However, several clinical studies have revealed an enrichment of P. gingivalis in the stool samples and colorectal mucosa of colorectal cancer patients. Thus, the goal of this study was to determine whether P. gingivalis can promote colorectal cancer progression in vitro. We established an acute infection model (24 h, multiplicity of infection =100) of P. gingivalis invasion of colorectal cancer cells to study the alterations induced by P. gingivalis in the proliferation and cell cycle of colorectal cancer cells. We observed that P. gingivalis can adhere and invade host cells a few hours after infection. Once invaded, P. gingivalis significantly promoted colorectal cancer cell proliferation, and the percentage of S phase cells was increased in the cell cycle assay. However, KDP136, a gingipain-deficient mutant of P. gingivalis 33277, showed a decreased ability to promote colorectal cancer cell proliferation, indicating that gingipain is associated with colorectal cancer cell proliferation. Furthermore, we extracted RNA from colorectal cancer cells for high-throughput sequencing analysis and reconfirmed the results by quantitative polymerase chain reaction and western blot analyses. The results suggested that the MAPK/ERK signaling pathway is significantly activated by P. gingivalis, while these changes were not observed for KDP136. In conclusion, P. gingivalis can invade cells and promote the proliferation of colorectal cancer cells by activating the MAPK/ERK signaling pathway. Gingipain is an essential virulence factor in this interaction.


Author(s):  
Kon-Young Ji ◽  
Ki Mo Kim ◽  
Yun Hee Kim ◽  
Ki-Shuk Shim ◽  
Joo Young Lee ◽  
...  

The molecular mechanism underlying the anticancer effects of Anemarrhena asphodeloides (A. asphodeloides) on colon cancer is unknown. This is the first study evaluating the anticancer effect of A. asphodeloides extract (AA-Ex) in serum-starved colorectal cancer cells. Changes in cell proliferation and morphology in serum-starved MC38 and HCT116 colorectal cancer cells were investigated using MTS assay. Cell cycle and apoptosis were investigated using flow cytometry, and cell cycle regulator expression was determined using qRT-PCR. Apoptosis regulator protein levels and mitogen-activated protein kinase (MAPK) phosphorylation were assessed using western blotting. AA-Ex sensitively suppressed proliferation of serum-starved colorectal cancer cells, with MC38 and HCT116 cells showing greater changes in proliferation after treatment with AA-Ex under serum starvation than HaCaT and RAW 264.7 cells. AA-Ex inhibited cell cycle progression in serum-starved MC38 and HCT116 cells and increased the expression of cell cycle inhibitors (p53, p21, and p27). Furthermore, AA-Ex induced apoptosis in serum-starved MC38 and HCT116 cells. Consistently, AA-Ex suppressed the expression of the anti-apoptotic molecule Bcl-2 and upregulated pro-apoptotic molecules (cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved-PARP) in serum-starved cells. AA-Ex treatment under serum starvation decreased AKT and ERK1/2 phosphorylation in the cell survival signaling pathway but increased p38 and JNK phosphorylation. Furthermore, AA-Ex treatment with serum starvation increased the levels of the transcription factors of the p38 and JNK pathway. Serum starvation sensitizes colorectal cancer cells to the anticancer effect of A. asphodeloidesvia p38/JNK-induced cell cycle arrest and apoptosis. Hence, AA-Ex possesses therapeutic potential for colon cancer treatment.


2015 ◽  
Vol 117 (5) ◽  
pp. 1262-1272 ◽  
Author(s):  
Nadia Mustapha ◽  
Aline Pinon ◽  
Youness Limami ◽  
Alain Simon ◽  
Kamel Ghedira ◽  
...  

2019 ◽  
Vol 12 (2) ◽  
pp. 629-638
Author(s):  
N. N. Bahari ◽  
S. Y. N. Jamaludin ◽  
A. H. Jahidin ◽  
M. N. Zahary ◽  
A. B. Mohd Hilmi

The transient receptor potential vanilloid member 4 (TRPV4) is a non-selective calcium (Ca2+)-permeable channel which is widely expressed in different types of tissues including the lungs, liver, kidneys and salivary gland. TRPV4 has been shown to serve as a cellular sensor where it is involved in processes such as osmoregulation, cell volume regulation and thermoregulation. Emerging evidence suggests that TRPV4 also plays important roles in several aspects of cancer progression. Despite the reported roles of TRPV4 in several forms of cancers, the role of TRPV4 in human colorectal cancer remains largely unexplored. In the present study, we sought to establish the potential role of TRPV4 in colorectal cancer by assessing TRPV4 expression levels and investigating whether TRPV4 pharmacological modulation may alter cell proliferation, cell cycle and cell death in colorectal cancer cells. Quantitative real-time PCR analysis revealed that TRPV4 mRNA levels were significantly lower in HT-29 cells than normal colon CCD-18Co cells. However, TRPV4 mRNA was absent in HCT-116 cells. Pharmacological activation of TRPV4 with GSK1016790A significantly enhanced the proliferation of HT-29 cells while TRPV4 inhibition using RN 1734 decreased their proliferation. Increased proliferation in GSK1016790A-treated HT-29 cells was attenuated by co-treatment with RN 1734. Pharmacological modulation of TRPV4 had no effect on the cell cycle progression but promoted cell death in HT-29 cells. Taken together, these findings suggest differential TRPV4 expression levels in human colorectal cancer cells and that pharmacological modulation of TRPV4 produces distinct effects on the proliferation and induces cell death in HT-29 cells.


Sign in / Sign up

Export Citation Format

Share Document