Population migration across the Qinghai-Tibet Plateau: Spatiotemporal patterns and driving factors

2021 ◽  
Vol 31 (2) ◽  
pp. 195-214
Author(s):  
Nan Wang ◽  
Huimeng Wang ◽  
Yunyan Du ◽  
Jiawei Yi ◽  
Zhang Liu ◽  
...  
2020 ◽  
Vol 12 (4) ◽  
pp. 1326 ◽  
Author(s):  
Weiguo Fan ◽  
Mengmeng Meng ◽  
Jianchang Lu ◽  
Xiaobin Dong ◽  
Hejie Wei ◽  
...  

Decoupling of energy consumption and economic development is a key factor in achieving sustainable regional development. The decoupling relationship between energy consumption and economic development in the Qinghai-Tibet Plateau region is still unclear. This paper uses the logarithmic mean Divisia index (LMDI) decomposition method and Tapio elastic index model to analyze the decoupling degree and driving factors of energy consumption and economic development, and evaluates the decoupling effort level in Qinghai-Tibet Plateau from 2006 to 2016. The results indicate that the Qinghai-Tibet Plateau region showed a weak decoupling as a whole, and that only Tibet experienced expanding negative decoupling in 2006–2007 and an expansion link in 2007–2008. Economic scale is a primary factor that hinders the decoupling of energy consumption, followed by investment intensity and industrial energy structure. The cumulative promotion effect of research and development (R&D) efficiency and intensity and the inhibition effect of investment intensity cancel each other out. With the exception of Tibet and Xinjiang, all provinces in the Qinghai-Tibet plateau have made decoupling efforts. Decoupling efforts made by R&D efficiency contributed the most, followed by energy intensity and R&D intensity. This paper provides policy recommendations for the decoupling of energy consumption experience for underdeveloped regions.


2020 ◽  
Vol 12 (19) ◽  
pp. 3150
Author(s):  
Junhan Chen ◽  
Feng Yan ◽  
Qi Lu

Vegetation is the terrestrial ecosystem component most sensitive to climate change. The Qinghai–Tibet Plateau (QTP), characterized by a cold climate and vulnerable ecosystems, has experienced significant warming in previous decades. Identifying the variation in vegetation coverage and elucidating its main driving factors are critical for ecological protection on the QTP. In this study, MOD13A2 Normalized Difference Vegetation Index (NDVI) data in the growing season (May to September) was used to represent QTP vegetation coverage during 2000–2019. The univariate linear regression, partial correlation analysis, residual analysis, and the Hurst exponent were used to detect the vegetation spatiotemporal dynamic, analyze the relationship between the vegetation and main driving factors, and predict the future vegetation dynamic. The growing season NDVI (GNDVI) of the QTP showed an extremely significant rate of increase (0.0011/a) during the study period, and 79.29% of the vegetated areas showed a greening trend. Over the past 20 years, the northeast, mid-east, and western edges of the plateau have been cooling and wetting, while the southwest, mid-west, and southeast have been warming and drying. Different climatic conditions lead to spatial differences in the response of plateau vegetation to climatic factors with generally 1–4 months lag time. The vegetation in the north of the plateau was mainly positively correlated with moisture, and negatively correlated with temperature, while the southern part showed positive correlation with temperature and negative correlation with moisture. Due to the enhancement of cooling and wetting trend in the last decade (2010–2019), especially in the south of the plateau, the greening trend of the plateau vegetation slowed down appreciably and even degraded in some areas. Human activities were mainly concentrated in the eastern part of the plateau—and its positive effect on vegetation was gradually increasing in most areas during study period, especially in the northeastern part. However, vegetation degradation caused by human activities in the southeast of the plateau should not be ignored. The future vegetation dynamic based on the Hurst exponent showed that the plateau faces a higher risk of vegetation degradation, which deserves more attention. This study explored the effect of climatic factors and human activities on vegetation of the QTP, thereby providing some guidance for the study of vegetation dynamic in the alpine areas.


Author(s):  
Han Li ◽  
Wei Song

As the “Third Pole”, the Qinghai-Tibet Plateau is threatened by environmental changes. Ecosystem vulnerability refers to the sensitivity and resilience of ecosystems to external disturbances. However, there is a lack of relevant studies on the driving factors of ecosystem vulnerability. Therefore, based on spatial principal components analysis and geographic detectors methods, this paper evaluates the ecosystem vulnerability and its driving factors on the Qinghai-Tibet Plateau from the years 2005 to 2015. The results were as follows: (1) The ecosystem vulnerability index (EVI) of the Qinghai-Tibet Plateau is mainly heavy and extreme, showing a gradually increasing trend from southeast to northwest. (2) The spatial heterogeneity of the EVI is significant in the southeast and northwest, but not in the southwest and central parts. (3) Analysis of influencing factors shows that environmental factors have more significant effects on EVI than socioeconomic variables, facilitating the proposal of adequate policy implications. More efforts should be devoted to ecological protection and restoration to prevent grassland degradation and desertification in the high-EVI areas in northwest. The government is also urged to improve the ecological compensation mechanisms and balance ecological protection and residents’ development needs in the southeast.


2021 ◽  
Vol 166 ◽  
pp. 104093
Author(s):  
Fei Peng ◽  
Wenjuan Zhang ◽  
Chimin Lai ◽  
Chengyang Li ◽  
Quangang You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document