scholarly journals Tissue material properties and computational modelling of the human knee: A critical review

Author(s):  
Abby E Peters ◽  
Riaz Akhtar ◽  
Eithne J Comerford ◽  
Karl T Bates

Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis. As a result significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing material property data for human knee joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model whole-knee joint mechanical behaviour through finite element modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fueled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result there now exists an extremely broad range of published values for human knee tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and osteoarthritis is limited. It is therefore currently challenging to construct finite element models of the knee that are truly representative of a specific age or disease-state. Consequently, recent whole-joint finite element models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model 1) young and old and 2) healthy and osteoarthritis human knee joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which finite element models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.

2017 ◽  
Author(s):  
Abby E Peters ◽  
Riaz Akhtar ◽  
Eithne J Comerford ◽  
Karl T Bates

Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis. As a result significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing material property data for human knee joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model whole-knee joint mechanical behaviour through finite element modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fueled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result there now exists an extremely broad range of published values for human knee tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and osteoarthritis is limited. It is therefore currently challenging to construct finite element models of the knee that are truly representative of a specific age or disease-state. Consequently, recent whole-joint finite element models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model 1) young and old and 2) healthy and osteoarthritis human knee joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which finite element models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4298 ◽  
Author(s):  
Abby E. Peters ◽  
Riaz Akhtar ◽  
Eithne J. Comerford ◽  
Karl T. Bates

Understanding how structural and functional alterations of individual tissues impact on whole-joint function is challenging, particularly in humans where direct invasive experimentation is difficult. Finite element (FE) computational models produce quantitative predictions of the mechanical and physiological behaviour of multiple tissues simultaneously, thereby providing a means to study changes that occur through healthy ageing and disease such as osteoarthritis (OA). As a result, significant research investment has been placed in developing such models of the human knee. Previous work has highlighted that model predictions are highly sensitive to the various inputs used to build them, particularly the mathematical definition of material properties of biological tissues. The goal of this systematic review is two-fold. First, we provide a comprehensive summation and evaluation of existing linear elastic material property data for human tibiofemoral joint tissues, tabulating numerical values as a reference resource for future studies. Second, we review efforts to model tibiofemoral joint mechanical behaviour through FE modelling with particular focus on how studies have sourced tissue material properties. The last decade has seen a renaissance in material testing fuelled by development of a variety of new engineering techniques that allow the mechanical behaviour of both soft and hard tissues to be characterised at a spectrum of scales from nano- to bulk tissue level. As a result, there now exists an extremely broad range of published values for human tibiofemoral joint tissues. However, our systematic review highlights gaps and ambiguities that mean quantitative understanding of how tissue material properties alter with age and OA is limited. It is therefore currently challenging to construct FE models of the knee that are truly representative of a specific age or disease-state. Consequently, recent tibiofemoral joint FE models have been highly generic in terms of material properties even relying on non-human data from multiple species. We highlight this by critically evaluating current ability to quantitatively compare and model (1) young and old and (2) healthy and OA human tibiofemoral joints. We suggest that future research into both healthy and diseased knee function will benefit greatly from a subject- or cohort-specific approach in which FE models are constructed using material properties, medical imagery and loading data from cohorts with consistent demographics and/or disease states.


2014 ◽  
Vol 1648 ◽  
Author(s):  
Michael Culler ◽  
Keri A. Ledford ◽  
Jason H. Nadler

ABSTRACTRemora fish are capable of fast, reversible and reliable adhesion to a wide variety of both natural and artificial marine hosts through a uniquely evolved dorsal pad. This adhesion is partially attributed to suction, which requires a robust seal between the pad interior and the ambient environment. Understanding the behavior of remora adhesion based on measurable surface parameters and material properties is a critical step when creating artificial, bio-inspired devices. In this work, structural and fluid finite element models (FEM) based on a simplified “unit cell” geometry were developed to predict the behavior of the seal with respect to host/remora surface topology and tissue material properties.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Duraisamy Shriram ◽  
Gideon Praveen Kumar ◽  
Fangsen Cui ◽  
Yee Han Dave Lee ◽  
Karupppasamy Subburaj

2017 ◽  
Vol 56 (7) ◽  
pp. 1189-1199 ◽  
Author(s):  
Hamid Naghibi Beidokhti ◽  
Dennis Janssen ◽  
Sebastiaan van de Groes ◽  
Nico Verdonschot

Author(s):  
Theodoros Marinopoulos ◽  
Lorenzo Zani ◽  
Simin Li ◽  
Vadim V. Silberschmidt

Abstract Modern developments of biomedical applications demand a better understanding of mechanical behaviour of soft biological tissues. As human soft tissues demonstrate a significant structural and functional diversity, characterisation of their mechanical behaviour still remains a challenge. Limitations related with implementation of mechanical experiments on human participants lead to a use of finite-element models for analysis of mechanical responses of soft tissues to different loads. This study focuses on parameters of numerical simulation considered for modelling of indentation of a human lower limb. Assessment of the effect of boundary conditions on the model size shows that at a ratio of its length to the tissue’s thickness of 1.7 for the 3D model this effect vanishes. The numerical results obtained with models employing various sets of mechanical parameters of the first-order Ogden scheme were compared with original experimental data. Furthermore, high sensitivity of the resulting reaction forces to the indenting direction is demonstrated for cases of both linear and angular misalignments of the indenter. Finally, the effect of changes in material parameters and their domain on their contribution to the reaction forces is discussed with the aim to improve our understanding of mechanical behaviour of soft tissues based on numerical methods. The undertaken research with its results on minimal requirements for finite-element models of indentation of soft tissues can support inverse analysis of their mechanical properties and underpin orthopaedic and medical procedures.


2017 ◽  
Vol 65 ◽  
pp. 1-11 ◽  
Author(s):  
Hamid Naghibi Beidokhti ◽  
Dennis Janssen ◽  
Sebastiaan van de Groes ◽  
Javad Hazrati ◽  
Ton Van den Boogaard ◽  
...  

1996 ◽  
Vol 118 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Michael R. Bryant ◽  
Peter J. McDonnell

Membrane inflation tests were performed on fresh, intact human corneas using a fiber optic displacement probe to measure the apical displacements. Finite element models of each test were used to identify the material properties for four different constitutive laws commonly used to model corneal refractive surgery. Finite element models of radial keratotomy using the different best-fit constitutive laws were then compared. The results suggest that the nonlinearity in the response of the cornea is material rather than geometric, and that material nonlinearity is important for modeling refractive surgery. It was also found that linear transverse isotropy is incapable of representing the anisotropy that has been experimentally measured by others, and that a hyperelastic law is not suitable for modeling the stiffening response of the cornea.


2002 ◽  
Vol 124 (3) ◽  
pp. 734-744 ◽  
Author(s):  
Ihab M. Hanna ◽  
John S. Agapiou ◽  
David A. Stephenson

The HSK toolholder-spindle connection was developed to overcome shortcomings of the 7/24 steep-taper interface, especially at higher speeds. However, the HSK system was standardized quickly, without detailed evaluation based on operational experience. Several issues concerning the reliability, maintainability, and safety of the interface have been raised within the international engineering community. This study was undertaken to analytically investigate factors which influence the performance and limitations of the HSK toolholder system. Finite Element Models were created to analyze the effects of varying toolholder and spindle taper geometry, axial spindle taper length, drawbar/clamping load, spindle speed, applied bending load, and applied torsional load on HSK toolholders. Outputs considered include taper-to-taper contact pressures, taper-to-taper clearances, minimum drawbar forces, interface stiffnesses, and stresses in the toolholder. Static deflections at the end of the holder predicted by the models agreed well with measured values. The results showed that the interface stiffness and load-carrying capability are significantly affected by taper mismatch and dimensional variations, and that stresses in the toolholder near the drive slots can be quite high, leading to potential fatigue issues for smaller toolholders subjected to frequent clamping-unclamping cycles (e.g., in high volume applications). The results can be used to specify minimum toolholder material properties for critical applications, as well as drawbar design and spindle/toolholder gaging guidelines to increase system reliability and maintainability.


Sign in / Sign up

Export Citation Format

Share Document