scholarly journals New taxa in Glomeromycota: Polonosporaceae fam. nov., Polonospora gen. nov., and P. polonica comb. nov.

2021 ◽  
Vol 20 (8) ◽  
pp. 941-951
Author(s):  
Janusz Błaszkowski ◽  
Piotr Niezgoda ◽  
Edward Meller ◽  
Paweł Milczarski ◽  
Szymon Zubek ◽  
...  

AbstractPhylogenetic analyses of sequences of the nuc rDNA small subunit (18S), internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), and large subunit (28S) region (= 18S-ITS-28S), as well as sequences of this region concatenated with sequences of the largest subunit of RNA polymerase II (RPB1) gene, proved that the species originally described as Acaulospora polonica (phylum Glomeromycota) represents a new genus and a new family of the ancient order Archaeosporales, here introduced into the Glomeromycota under the names Polonospora and Polonosporaceae, respectively. The phylogenetic analyses and BLASTn queries also indicated that the Polonosporaceae with P. polonica comb. nov. still contains several morphologically undescribed taxa at the ranks of genus and species, which have a worldwide distribution.

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 666
Author(s):  
Phongeun Sysouphanthong ◽  
Naritsada Thongklang ◽  
Jian-Kui Liu ◽  
Else C. Vellinga

In our ongoing research on lepiotaceous taxa (Agaricaceae s.l.) in Laos and northern Thailand, we focus here on Chlorophyllum, Clarkeinda, Macrolepiota, Pseudolepiota, and Xanthagaricus. Collections were obtained from various habitats, including agricultural habitats, grasslands, and rainforests. A total of 12 taxa were examined and investigated. Of these 12, two are new for science; viz. Xanthagaricus purpureosquamulosus with brownish-grey to violet-brown squamules on a pale-violet to violet background; it shares the pileus color with X. caeruleus and X. ianthinus, but differs in other characters; and Macrolepiota excelsa, rather similar to M. procera but related toM. detersa. Two species, Pseudolepiota zangmui and Xanthagaricus necopinatus are recorded for the first time in Thailand. Four species of Chlorophyllum and a total of four species of Macrolepiota were found, viz., C. demangei and C. hortense with white basidiospores, C. molybdites and C. globosum with green basidiospores, M. detersa, M. dolichaula, the new M. excelsa, and M. velosa. Another rather common striking species is Clarkeinda trachodes, with yellow-green basidiospores. Each species is described in detail, with color photographs and line drawings. Phylogenetic analyses based on internal transcribed spacer (nrITS) region, the large subunit nuclear ribosomal (nrLSU) DNA and RNA polymerase II second largest subunit (rpb2) genes provide evidence for the placement of the species covered.


2020 ◽  
Vol 6 (4) ◽  
pp. 187
Author(s):  
Wei Sun ◽  
Lei Su ◽  
Shun Yang ◽  
Jingzu Sun ◽  
Bingjie Liu ◽  
...  

Rock-inhabiting fungi (RIF) are nonlichenized fungi that naturally colonize rock surfaces and subsurfaces. The extremely slow growth rate and lack of distinguishing morphological characteristics of RIF resulted in a poor understanding on their biodiversity. In this study, we surveyed RIF colonizing historical stone monuments and natural rock formations from throughout China. Among over 1000 isolates, after preliminary delimitation using the internal transcribed spacer region (ITS) sequences, representative isolates belonging to Trichomeriaceae and Herpotrichiellaceae were selected for a combined analysis of ITS and the nuclear ribosomal large subunit (nucLSU) to determine the generic placements. Eight clades representing seven known genera and one new genus herein named as Anthracina were placed in Trichomeriaceae. While, for Herpotrichiellaceae, two clades corresponded to two genera: Cladophialophora and Exophiala. Fine-scale phylogenetic analyses using combined sequences of the partial actin gene (ACT), ITS, mitochondrial small subunit ribosomal DNA (mtSSU), nucLSU, the largest subunit of RNA polymerase II (RPB1), small subunit of nuclear ribosomal RNA gene (SSU), translation elongation factor (TEF), and β-tubulin gene (TUB) revealed that these strains represented 11 and 6 new species, respectively, in Trichomeriaceae and Herpotrichiellaceae. The 17 new species were described, illustrated for their morphologies and compared with similar taxa. Our study demonstrated that the diversity of RIF is surprisingly high and still poorly understood. In addition, a rapid strategy for classifying RIF was proposed to determine the generic and familial placements through preliminary ITS and nucLSU analyses, followed by combined analyses of five loci selected from ACT, ITS, mtSSU, nucLSU, RPB1, and/or the second subunit of RNA polymerase II gene (RPB2), SSU, TEF, and TUB regions to classify RIF to the species level.


2021 ◽  
Vol 20 (1) ◽  
pp. 39-50
Author(s):  
Alexandra Pintye ◽  
Dániel G. Knapp

AbstractIn this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grasslands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the surface of autoclaved plant materials. Both species are first reported here as root-colonizing fungi.


2021 ◽  
Vol 7 (12) ◽  
pp. 1086
Author(s):  
Guang-Fu Mou ◽  
Tolgor Bau

Asproinocybe and Tricholosporum are not well known, and their placement at the family level remains undetermined. In this study, we conducted molecular phylogenetic analyses based on nuc rDNA internal transcribed spacer region (ITS) and nuc 28S rDNA (nrLSU), and a dataset with six molecular markers (ITS, LSU, RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2), 18S nuclear small subunit ribosomal DNA (nrSSU), and translation elongation factor 1-alpha (TEF1-α)) using Bayesian (BA) and Maximum Likelihood (ML) methods, we found that the species of Asproinocybe and Tricholosporum formed an independent family-level clade (0.98/72). Asproinocybaceae fam. nov., a new family, is established here for accommodating this clade. Two new species, Asproinocybe sinensis and Tricholosporum guangxiense, from subtropical and tropical karst areas of China, are also described here.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Liu ◽  
Lu-Lu Shen ◽  
Yan Wang ◽  
Tai-Min Xu ◽  
Genevieve Gates ◽  
...  

Cyanosporus is a cosmopolitan brown-rot fungal genus, recognizable by blue-tinted basidiocarps. Species in this genus were usually treated as belonging to the Postia caesia complex, however, recent phylogenetic analyses showed that this complex represents an independent genus. During further studies on Cyanosporus, five new species were discovered based on morphological features and molecular data. Phylogenetic analyses of Cyanosporus were conducted using the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF); illustrated descriptions of the new species are provided. In addition, fifteen species previously belonging to the Postia caesia complex are transferred to Cyanosporus and proposed as new combinations.


2010 ◽  
Vol 60 (2) ◽  
pp. 460-468 ◽  
Author(s):  
Miao Miao ◽  
Yangang Wang ◽  
Weibo Song ◽  
John C. Clamp ◽  
Khaled A. S. Al-Rasheid

Recently, an undescribed marine ciliate was isolated from China. Investigation of its morphology and infraciliature revealed it as an undescribed species representing a new genus, Eurystomatella n. gen., the type of the new family Eurystomatellidae n. fam. The new family is defined by close-set, apically positioned oral membranelles and a dominant buccal field that is surrounded by an almost completely circular paroral membrane. The new genus is defined by having a small oral membranelle 1 (M1), bipartite M2 and well-developed M3, a body surface faintly sculptured with a silverline system in a quadrangular, reticulate pattern and a cytostome located at the anterior third of a large buccal field. The type species of the new genus, Eurystomatella sinica n. sp., is a morphologically unique form that is defined mainly by the combination of a conspicuously flattened body, several caudal cilia, extremely long cilia associated with the buccal apparatus and a contractile vacuole located subcaudally. According to phylogenetic analyses of small-subunit (SSU) rRNA gene sequences, Eurystomatella clusters with the genus Cyclidium, as a sister group to the family Pleuronematidae. The great divergence in both buccal and somatic ciliature between Eurystomatella and all other known scuticociliates supports the establishment of a new family for Eurystomatella.


2020 ◽  
Vol 44 (1) ◽  
pp. 206-239 ◽  
Author(s):  
Y.-F. Sun ◽  
D.H. Costa-Rezende ◽  
J.-H. Xing ◽  
J.-L. Zhou ◽  
B. Zhang ◽  
...  

Amauroderma s.lat. has been defined mainly by the morphological features of non-truncate and double-walled basidiospores with a distinctly ornamented endospore wall. In this work, taxonomic and phylogenetic studies on species of Amauroderma s.lat. are carried out by morphological examination together with ultrastructural observations, and molecular phylogenetic analyses of multiple loci including the internal transcribed spacer regions (ITS), the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II (RPB1) and the second largest subunit of RNA polymerase II (RPB2), the translation elongation factor 1-α gene (TEF) and the β-tubulin gene (TUB). The results demonstrate that species of Ganodermataceae formed ten clades. Species previously placed in Amauroderma s.lat. are divided into four clades: Amauroderma s.str., Foraminispora, Furtadoa and a new genus Sanguinoderma. The classification of Amauroderma s. lat. is thus revised, six new species are described and illustrated, and eight new combinations are proposed. SEM micrographs of basidiospores of Foraminispora and Sanguinoderma are provided, and the importance of SEM in delimitation of taxa in this study is briefly discussed. Keys to species of Amauroderma s.str., Foraminispora, Furtadoa, and Sanguinoderma are also provided.


MycoKeys ◽  
2021 ◽  
Vol 82 ◽  
pp. 33-56
Author(s):  
Long-Fei Fan ◽  
Renato Lúcio Mendes Alvarenga ◽  
Tatiana Baptista Gibertoni ◽  
Fang Wu ◽  
Yu-Cheng Dai

Samples of species close to Tremella fibulifera from China and Brazil are studied, and T. fibulifera is confirmed as a species complex including nine species. Five known species (T. cheejenii, T. fibulifera s.s., T. “neofibulifera”, T. lloydiae-candidae and T. olens) and four new species (T. australe, T. guangxiensis, T. latispora and T. subfibulifera) in the complex are recognized based on morphological characteristics, molecular evidence, and geographic distribution. Sequences of eight species of the complex were included in the phylogenetic analyses because T. olens lacks molecular data. The phylogenetic analyses were performed by a combined sequence dataset of the internal transcribed spacer (ITS) and the partial nuclear large subunit rDNA (nLSU), and a combined sequence dataset of the ITS, partial nLSU, the small subunit mitochondrial rRNA gene (mtSSU), the translation elongation factor 1-α (TEF1), the largest and second largest subunits of RNA polymerase II (RPB1 and RPB2). The eight species formed eight independent lineages with robust support in phylogenies based on both datasets. Illustrated description of the six species including Tremella fibulifera s.s., T. “neofibulifera” and four new species, and discussions with their related species, are provided. A table of the comparison of the important characteristics of nine species in the T. fibulifera complex and a key to the whitish species in Tremella s.s. are provided.


2021 ◽  
Vol 7 (10) ◽  
pp. 818
Author(s):  
Yan-Hong Mu ◽  
Jia-Rui Yu ◽  
Ting Cao ◽  
Xiang-Hua Wang ◽  
Hai-Sheng Yuan

The genus Hydnellum is an important group of stipitate hydnaceous fungi which can form ectomycorrhiza with many species of woody plants. In recent decades, the frequency and number of basidiocarps observed in China have been declining significantly. So far, however, we know little about the species diversity of Hydnellum in China. In this study, we conducted molecular phylogenetic analyses based on sections of multiple loci, including the large subunit of nuclear ribosomal RNA gene (nLSU), the internal transcribed spacer regions (ITS), the small subunit of nuclear ribosomal RNA gene (SSU) and the second-largest subunit of RNA polymerase II gene (RPB2), as well as morphological studies, of collected samples of Hydnellum from China. We also inferred Maximum Likelihood and Bayesian phylogenies for the order Thelephorales from the dataset of the combined nLSU and ITS. This study has revealed the phylogenetic position of Hydnellum in the order Thelephorales, and phylogenetically confirmed ten major clades in Thelephorales; Twenty-nine taxa are proposed, described or reported, including 10 new subgenera (Hydnellum subgenus Hydnellum, subg. Caesispinosum, subg. Croceum, subg. Inflatum, subg. Rhizomorphum, subg. Scabrosum, subg. Spongiosum, subg. Subindufibulatum, subg. Violaceum and subg. Zonatum), 11 new species (Hydnellum atrorubrum, H. atrospinosum, H. bomiense, H. brunneorubrum, H. fibulatum, H. granulosum, H. inflatum, H. rubidofuscum, H. squamulosum, H. sulcatum and H. yunnanense), 3 newly recorded species (H. caeruleum, H. peckii and H. spongiosipes) and 5 notable specimens (Hydnellum sp 1, H. sp 2, H. sp 3, H. sp 4 and H. sp 5). A classification system based on the morphological characteristics (especially the hyphal structure types) and molecular analyses is proposed to accommodate most species in Hydnellum. The distinguishing characters of the subgenera and the new species with their closely related taxa are discussed. A key to the species of Hydnellum from China is provided.


Phytotaxa ◽  
2019 ◽  
Vol 425 (4) ◽  
pp. 233-243
Author(s):  
SHIWALI RANA ◽  
SANJAY KUMAR SINGH

A fungal taxa isolated from leaf spots of Mallotus philippensis from Kangra district of North-Western Himalayan region of India is established as a new genus based on morphological characters of asexual-morphs, cultural characteristics and phylogenetic analyses of the partial nuclear ribosomal 28S large subunit (LSU) and internal transcribed spacer (ITS) rDNA sequence data. The generic placement of the genus has been determined based on DNA sequences from authenticated isolates. The present taxon has turned out to be distinct, showing nearly 90% identity with other known genera in Diaporthales based on nrDNA internal transcribed spacer region. The morphological description is provided for the new taxa and compared with the similar taxa belonging to the order Diaporthales. The culture was found to show heavy sporulation in all kind of media. The type specimen and ex type culture have been deposited in the Ajrekar Mycological Herbarium (AMH) and National Fungal Culture Collection of India (NFCCI-WDCM 932), respectively.


Sign in / Sign up

Export Citation Format

Share Document