Effects of exercise on behavior and peripheral blood lymphocyte apoptosis in a rat model of chronic fatigue syndrome

Author(s):  
Jun Zou ◽  
Jianqi Yuan ◽  
Shuang Lv ◽  
Jiaheng Tu
2014 ◽  
Vol 13 (1) ◽  
Author(s):  
I. Y. Sydorchuk ◽  
L. I. Sydorchuk ◽  
S. A. Levytska ◽  
R. I. Sydorchuk ◽  
L. P. Sydorchuk ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Changzhuan Shao ◽  
Yiming Ren ◽  
Zinan Wang ◽  
Chenzhe Kang ◽  
Hongke Jiang ◽  
...  

Purpose. The aim of the present study was to elucidate the metabolic mechanisms associated with chronic fatigue syndrome (CFS) via an analysis of urine metabolites prior to and following exercise in a rat model. Methods. A rat model of CFS was established using restraint-stress, forced exercise, and crowded and noisy environments over a period of 4 weeks. Behavioral experiments were conducted in order to evaluate the model. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS) in combination with multivariate statistical analysis before and after exercise. Results. A total of 20 metabolites were detected in CFS rats before and after exercise. Three metabolic pathways (TCA cycle; alanine, aspartate, and glutamate metabolism; steroid hormone biosynthesis) were significantly impacted before and after exercise, while sphingolipid metabolism alone exhibited significant alterations after exercise only. Conclusion. In addition to metabolic disturbances involving some energy substances, alterations in steroid hormone biosynthesis and sphingolipid metabolism were detected in CFS rats. Sphingosine and 21-hydroxypregnenolone may be key biomarkers of CFS, potentially offering evidence in support of immune dysfunction and hypothalamic-pituitary-adrenal (HPA) axis hypoactivity in patients with CFS.


2020 ◽  
Author(s):  
Eiren Sweetman ◽  
Torsten Kleffmann ◽  
Christina Edgar ◽  
Michel de Lange ◽  
Rosamund Vallings ◽  
...  

Abstract Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious and complex physical illness that affects all body systems with a multiplicity of symptoms, but key hallmarks of the disease are pervasive fatigue and ‘post-exertional malaise’, exacerbation after physical and/or mental activity of the intrinsic fatigue and other symptoms that can be highly debilitating and last from days to months. Although the disease can vary widely between individuals, common symptoms also include pain, cognitive deficits, sleep dysfunction, as well as immune, neurological and autonomic symptoms. Typically, it is a very isolating illness socially, carrying a stigma because of the lack of understanding of the cause and pathophysiology.Methods: To gain insight into the pathophysiology of ME/CFS, we examined the proteomes of peripheral blood mononuclear cells (PBMCs) by SWATH-MS analysis in a small well-characterised group of patients and matched controls. A principal component analysis (PCA) was used to stratify groups based on protein abundance patterns, which clearly segregated the majority of the ME/CFS patients (9/11) from the controls. This majority subgroup of ME/CFS patients was then further compared to the control group. Results: A total of 60 proteins in the ME/CFS patients were differentially expressed (P < 0.01, Log10 (Fold Change) > 0.2 and < -0.2). Comparison of the PCA selected subgroup of ME/CFS patients (9/11) with controls increased the number of proteins differentially expressed to 99. Of particular relevance to the core symptoms of fatigue and post-exertional malaise experienced in ME/CFS, a proportion of the identified proteins in the ME/CFS groups were involved in mitochondrial function, oxidative phosphorylation, electron transport chain complexes, and redox regulation. A significant number were also involved in previously implicated disturbances in ME/CFS, such as the immune inflammatory response, DNA methylation, apoptosis and proteasome activation. Conclusions: The results from this study support a model of deficient ATP production in ME/CFS, compensated for by upregulation of immediate pathways upstream of Complex V that would suggest an elevation of oxidative stress. This study and others have found evidence of a distinct pathology in ME/CFS that holds promise for developing diagnostic biomarkers.


Sign in / Sign up

Export Citation Format

Share Document