Effects of Custom-made Insoles on Plantar Biomechanics and Upper Extremity Muscle Performance

Author(s):  
Yi Xu ◽  
Qing-hua Hou ◽  
Xiu-lan Han ◽  
Chu-huai Wang ◽  
Dong-feng Huang
2003 ◽  
Vol 15 (06) ◽  
pp. 217-222 ◽  
Author(s):  
MING-CHANG TSAI ◽  
PEI-HSI CHOU ◽  
YOU-LI CHOU ◽  
TING-SHENG LIN

From previous researches, studies on the forward fall had focused on the relationship between the joint loading and position of the forearm and elbow. Previous studies also stressed the importance of energy absorption by the shoulder and elbow during the forward fall. However, the effects of different tilting angles on joint loading of the upper extremity had not been presented. This study investigated the effects of different tilting angles on joint loading of the upper extremity during fall on an outstretched hand. The absorbed energy at Ts, T1, T2 and Te were analyzed. Ten healthy young males were selected in this study. Subjects were adjusted to different trunk tilting angles of 0°, 10°, 20° and 30°with a custom-made suspension system with an outstretched hand of 5 cm height above the ground. The expert vision motion system with 6 CCD cameras and one force plate were used to collect kinetics and kinematics data. The results showed that shoulder would absorb the most impact energy and followed by wrist and elbow. The time period at T2 to Te absorbed more energy in every joint.


10.2196/19071 ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e19071
Author(s):  
Elisavet Koutsiana ◽  
Ioannis Ladakis ◽  
Dimitris Fotopoulos ◽  
Achilleas Chytas ◽  
Vassilis Kilintzis ◽  
...  

Background Serious gaming has increasingly gained attention as a potential new component in clinical practice. Specifically, its use in the rehabilitation of motor dysfunctions has been intensively researched during the past three decades. Objective The aim of this scoping review was to evaluate the current role of serious games in upper extremity rehabilitation, and to identify common methods and practice as well as technology patterns. This objective was approached via the exploration of published research efforts over time. Methods The literature search, using the PubMed and Scopus databases, included articles published from 1999 to 2019. The eligibility criteria were (i) any form of game-based arm rehabilitation; (ii) published in a peer-reviewed journal or conference; (iii) introduce a game in an electronic format; (iv) published in English; and (v) not a review, meta-analysis, or conference abstract. The search strategy identified 169 relevant articles. Results The results indicated an increasing research trend in the domain of serious gaming deployment in upper extremity rehabilitation. Furthermore, differences regarding the number of publications and the game approach were noted between studies that used commercial devices in their rehabilitation systems and those that proposed a custom-made robotic arm, glove, or other devices for the connection and interaction with the game platform. A particularly relevant observation concerns the evaluation of the introduced systems. Although one-third of the studies evaluated their implementations with patients, in most cases, there is the need for a larger number of participants and better testing of the rehabilitation scheme efficiency over time. Most of the studies that included some form of assessment for the introduced rehabilitation game mentioned user experience as one of the factors considered for evaluation of the system. Besides user experience assessment, the most common evaluation method involving patients was the use of standard medical tests. Finally, a few studies attempted to extract game features to introduce quantitative measurements for the evaluation of patient improvement. Conclusions This paper presents an overview of a significant research topic and highlights the current state of the field. Despite extensive attempts for the development of gamified rehabilitation systems, there is no definite answer as to whether a serious game is a favorable means for upper extremity functionality improvement; however, this certainly constitutes a supplementary means for motivation. The development of a unified performance quantification framework and more extensive experiments could generate richer evidence and contribute toward this direction.


2020 ◽  
Author(s):  
Elisavet Koutsiana ◽  
Ioannis Ladakis ◽  
Dimitris Fotopoulos ◽  
Achilleas Chytas ◽  
Vassilis Kilintzis ◽  
...  

BACKGROUND Serious gaming has increasingly gained attention as a potential new component in clinical practice. Specifically, its use in the rehabilitation of motor dysfunctions has been intensively researched during the past three decades. OBJECTIVE The aim of this scoping review was to evaluate the current role of serious games in upper extremity rehabilitation, and to identify common methods and practice as well as technology patterns. This objective was approached via the exploration of published research efforts over time. METHODS The literature search, using the PubMed and Scopus databases, included articles published from 1999 to 2019. The eligibility criteria were (i) any form of game-based arm rehabilitation; (ii) published in a peer-reviewed journal or conference; (iii) introduce a game in an electronic format; (iv) published in English; and (v) not a review, meta-analysis, or conference abstract. The search strategy identified 169 relevant articles. RESULTS The results indicated an increasing research trend in the domain of serious gaming deployment in upper extremity rehabilitation. Furthermore, differences regarding the number of publications and the game approach were noted between studies that used commercial devices in their rehabilitation systems and those that proposed a custom-made robotic arm, glove, or other devices for the connection and interaction with the game platform. A particularly relevant observation concerns the evaluation of the introduced systems. Although one-third of the studies evaluated their implementations with patients, in most cases, there is the need for a larger number of participants and better testing of the rehabilitation scheme efficiency over time. Most of the studies that included some form of assessment for the introduced rehabilitation game mentioned user experience as one of the factors considered for evaluation of the system. Besides user experience assessment, the most common evaluation method involving patients was the use of standard medical tests. Finally, a few studies attempted to extract game features to introduce quantitative measurements for the evaluation of patient improvement. CONCLUSIONS This paper presents an overview of a significant research topic and highlights the current state of the field. Despite extensive attempts for the development of gamified rehabilitation systems, there is no definite answer as to whether a serious game is a favorable means for upper extremity functionality improvement; however, this certainly constitutes a supplementary means for motivation. The development of a unified performance quantification framework and more extensive experiments could generate richer evidence and contribute toward this direction.


2002 ◽  
Vol 7 (2) ◽  
pp. 1-4, 12 ◽  
Author(s):  
Christopher R. Brigham

Abstract To account for the effects of multiple impairments, evaluating physicians must provide a summary value that combines multiple impairments so the whole person impairment is equal to or less than the sum of all the individual impairment values. A common error is to add values that should be combined and typically results in an inflated rating. The Combined Values Chart in the AMA Guides to the Evaluation of Permanent Impairment, Fifth Edition, includes instructions that guide physicians about combining impairment ratings. For example, impairment values within a region generally are combined and converted to a whole person permanent impairment before combination with the results from other regions (exceptions include certain impairments of the spine and extremities). When they combine three or more values, physicians should select and combine the two lowest values; this value is combined with the third value to yield the total value. Upper extremity impairment ratings are combined based on the principle that a second and each succeeding impairment applies not to the whole unit (eg, whole finger) but only to the part that remains (eg, proximal phalanx). Physicians who combine lower extremity impairments usually use only one evaluation method, but, if more than one method is used, the physician should use the Combined Values Chart.


2003 ◽  
Vol 8 (5) ◽  
pp. 4-12
Author(s):  
Lorne Direnfeld ◽  
James Talmage ◽  
Christopher Brigham

Abstract This article was prompted by the submission of two challenging cases that exemplify the decision processes involved in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides). In both cases, the physical examinations were normal with no evidence of illness behavior, but, based on their histories and clinical presentations, the patients reported credible symptoms attributable to specific significant injuries. The dilemma for evaluators was whether to adhere to the AMA Guides, as written, or to attempt to rate impairment in these rare cases. In the first case, the evaluating neurologist used alternative approaches to define impairment based on the presence of thoracic outlet syndrome and upper extremity pain, as if there were a nerve injury. An orthopedic surgeon who evaluated the case did not base impairment on pain and used the upper extremity chapters in the AMA Guides. The impairment ratings determined using either the nervous system or upper extremity chapters of the AMA Guides resulted in almost the same rating (9% vs 8% upper extremity impairment), and either value converted to 5% whole person permanent impairment. In the second case, the neurologist evaluated the individual for neuropathic pain (9% WPI), and the orthopedic surgeon rated the patient as Diagnosis-related estimates Cervical Category II for nonverifiable radicular pain (5% to 8% WPI).


2001 ◽  
Vol 6 (1) ◽  
pp. 1-3
Author(s):  
Robert H. Haralson

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, was published in November 2000 and contains major changes from its predecessor. In the Fourth Edition, all musculoskeletal evaluation and rating was described in a single chapter. In the Fifth Edition, this information has been divided into three separate chapters: Upper Extremity (13), Lower Extremity (14), and Spine (15). This article discusses changes in the spine chapter. The Models for rating spinal impairment now are called Methods. The AMA Guides, Fifth Edition, has reverted to standard terminology for spinal regions in the Diagnosis-related estimates (DRE) Method, and both it and the Range of Motion (ROM) Method now reference cervical, thoracic, and lumbar. Also, the language requiring the use of the DRE, rather than the ROM Method has been strengthened. The biggest change in the DRE Method is that evaluation should include the treatment results. Unfortunately, the Fourth Edition's philosophy regarding when and how to rate impairment using the DRE Model led to a number of problems, including the same rating of all patients with radiculopathy despite some true differences in outcomes. The term differentiator was abandoned and replaced with clinical findings. Significant changes were made in evaluation of patients with spinal cord injuries, and evaluators should become familiar with these and other changes in the Fifth Edition.


Sign in / Sign up

Export Citation Format

Share Document