Regulation of protein and prostaglandin secretion in polarized primary cultures of caprine uterine epithelial cells

1998 ◽  
Vol 34 (7) ◽  
pp. 578-584 ◽  
Author(s):  
G. R. Newton ◽  
D. W. Weise ◽  
J. A. Bowen ◽  
S. Woldesenbet ◽  
R. C. Burghardt
1988 ◽  
Vol 107 (6) ◽  
pp. 2425-2435 ◽  
Author(s):  
D D Carson ◽  
J P Tang ◽  
J Julian ◽  
S R Glasser

We have studied proteoglycan secretion using a recently developed system for the preparing of polarized primary cultures of rat uterine epithelial cells. To mimic their native environment better and provide a system for discriminating apical from basolateral compartments, we cultured cells on semipermeable supports impregnated with biomatrix. Keratan sulfate proteoglycans (KSPG) as well as heparan sulfate-containing molecules (HS[PG]) were the major sulfated products synthesized and secreted by these cells. The ability of epithelial cells to secrete KSPG greatly increased in parallel with the development of cell polarity. Furthermore, KSPG secretion occurred preferentially to the apical medium in highly polarized cultures. In contrast, HS(PG) secretion did not increase along with development of polarity, although most HS(PG) (85%) were secreted apically as well. Pulse-chase studies indicated that highly polarized cultures secreted 80-90% of the sulfated macromolecules they synthesized, predominantly to the apical secretory compartment. The half-lives for KSPG and HS(PG) secretion were approximately 3 and 4 h, respectively. Parallel studies of cells cultured on tissue culture plastic-coated with biomatrix indicated that neither the state of confluency nor the biomatrix was primarily responsible for inducing the KSPG secretion observed in polarizing cultures. Experiments with uterine strips indicated that the steroid hormone, 17-beta-estradiol, markedly stimulated synthesis and secretion of sulfated macromolecules, but had no preferential effect on KSPG production. The ratio of KSPG to HS(PG) secretion from uterine strips was similar to that found in the apical medium of highly polarized cell cultures. Thus, the pattern of proteoglycan secretion observed in polarized cell cultures mimicked that observed for uterine cells, although the preferential increase in KSPG production by polarized cells could not be attributed to an estrogen response. Collectively, these studies describe the major sulfated molecules secreted by rat uterine epithelial cells under varying conditions and provide evidence for a novel influence of cell polarity on the cell's ability to secrete sulfated glycoconjugates.


Author(s):  
A. C. Enders

The alteration in membrane relationships seen at implantation include 1) interaction between cytotrophoblast cells to form syncytial trophoblast and addition to the syncytium by subsequent fusion of cytotrophoblast cells, 2) formation of a wide variety of functional complex relationships by trophoblast with uterine epithelial cells in the process of invasion of the endometrium, and 3) in the case of the rabbit, fusion of some uterine epithelial cells with the trophoblast.Formation of syncytium is apparently a membrane fusion phenomenon in which rapid confluence of cytoplasm often results in isolation of residual membrane within masses of syncytial trophoblast. Often the last areas of membrane to disappear are those including a desmosome where the cell membranes are apparently held apart from fusion.


1992 ◽  
Vol 144 (1) ◽  
pp. 36-38 ◽  
Author(s):  
C.R. Murphy ◽  
P.A.W. Rogers ◽  
M.J. Hosie ◽  
J. Leeton ◽  
L. Beaton

2012 ◽  
Vol 5 (6) ◽  
pp. 870-880 ◽  
Author(s):  
Y. Yin ◽  
C. Lin ◽  
G. M. Veith ◽  
H. Chen ◽  
M. Dhandha ◽  
...  

1991 ◽  
Vol 125 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Bertil G. Casslén ◽  
Michael J. K. Harper

Abstract. The aim of the study was to explore the possibility of using human endometrial epithelial cells in serum-free culture as a sensitive assay for hormonal effects on the human endometrium. Glands were isolated following enzymatic digestion of the endometrial tissue and plated on a collagen matrix. The epithelial cells were grown in either medium containing serum or in supplemented serum-free medium. No morphologic difference was found between cells grown in these two media for up to 5 days, using either light or scanning electron microscopy. Secretion of prostaglandin F2α (PGF2α) in response to estradiol was not lower in serum-free medium than in medium containing serum for the first 2 days of culture, whereas secretion declined after prolonged incubation in the serum-free medium. This response to estradiol was clearly dose-dependent, and it was further enhanced by addition of arachidonic acid, the precursor for prostaglandin synthesis, to the medium. Co-culture of endometrial stromal cells did not influence the secretion of PGF2α by epithelial cells. We conclude that the secretion of PGF2α from primary cultures of human endometrial epithelial cells grown on collagen in serum-free medium can be used for a limited period as an assay of estrogenic effects on the human endometrium.


Sign in / Sign up

Export Citation Format

Share Document