A methodology for large-scale Athyrium sheareri gametophyte proliferation and sporophyte production using tissue culture

2019 ◽  
Vol 55 (5) ◽  
pp. 519-526 ◽  
Author(s):  
Bo Kook Jang ◽  
Ju Sung Cho ◽  
Kyungtae Park ◽  
Cheol Hee Lee
2002 ◽  
Vol 06 (24) ◽  
pp. 930-935 ◽  
Author(s):  
Chang-deok Han

Transposable elements are powerful mutagens. Along with genomic sequences, knock-out phenotypes and expression patterns are important information to elucidate the function of genes. In this review, I propose a strategy to develop tranposant lines on a large scale by combining genetic cross and tissue culture of Ac and Ds lines. Based on the facts that Ds tends to be inactive in F2 or later generation and Ds becomes reactivated via tissue culture, a large scale of transposants can be produced by tissue culture of seeds carrying Ac and inactive Ds. In this review, I describe limitations and considerations in operating transposon tagging systems in rice. Also, I discuss the efficiency of our gene trap system and technical procedures to clone Ds flanking DNA.


Author(s):  
CHARLES V. BENTON ◽  
ROGER W. JOHNSON ◽  
ALBERT PERRY ◽  
W.I. JONES ◽  
GEORGE P. SHIBLEY

Diabetes ◽  
1979 ◽  
Vol 28 (8) ◽  
pp. 769-776 ◽  
Author(s):  
C. Hellerstrom ◽  
N. J. Lewis ◽  
H. Borg ◽  
R. Johnson ◽  
N. Freinkel

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3539-3539
Author(s):  
Johannes C.M. Van der Loo ◽  
William Swaney ◽  
Diana Nordling ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract The need for gamma-retroviral vectors with self-inactivating (SIN) long terminal repeats for clinical trials has prompted a shift in the method with which large scale GMP-grade vectors are produced, from the use of stable producer lines to transient transfection-based techniques. The main challenge of instituting this methodology was to develop SIN retrovirus vectors that produced high amounts of genomic vector RNA in packaging cells, and to design scalable processes for closed system culture, transfection and virus harvest. Using improved expression plasmids, the Vector Production Facility, an academic GMP manufacturing laboratory that is part of the Translational Cores at Cincinnati Children’s Hospital, has developed such a method based on the Wave Bioreactor® production platform. In brief, cells from a certified 293T master cell bank are expanded, mixed with transfection reagents, and pumped into a 2, 10 or 20 Liter Wave Cell Bag containing FibraCel® discs. Cells are cultured in DMEM with GlutaMax® and 10% FBS at 37°C, 5% CO2 at a rocking speed of 22 rpm and 6° angle. At 16–20 hrs post-transfection, the media is changed; virus is harvested at 12-hour intervals, filtered through a leukocyte reduction filter, aliquoted into Cryocyte freezing containers, and frozen at or below −70°C. Several processing parameters, including the confluency of cells harvested prior to transfection, the timing of transfection, the amount of plasmid DNA, exposure of cells to PBS/TrypLESelect, and the timing of the media change post-transfection affected vector titer. Mixing cells with plasmid and transfection mixture prior to seeding onto FibraCel, as compared to transfecting cells 1-day post-seeding (as is standard when using tissue culture plastic) increased the titer from 104 to 4 × 105 IU/mL. Similarly, increasing the amount of plasmid DNA per mL from 4.6 to 9.2 μg doubled the titer in the Wave, while it reduced titer by 20–40% in tissue culture flasks (Fig. 1). Using an optimized protocol, six cGMP-grade SIN gamma-retroviral vectors have now been produced in support of the FDA’s National Toxicology Program (NTP), with unconcentrated vector titers ranging from 1 × 106 to as high as 4 × 107 IU/mL. Using similar processing, we have produced a large scale SIN gamma-retroviral vector (GALV pseudotyped) for an international X-linked SCID trial with average unconcentrated titers of 106 IU/mL in all viral harvests. In summary, the process developed at the Cincinnati Children’s Hospital Vector Production Facility allows for large scale closed-system production of high-titer retroviral vectors for clinical trials using transient transfection. Figure Figure


Author(s):  
Allan John ◽  
Bill Mason

SynopsisA combination of two vegetative techniques is seen as a possibility for large-scale production of juvenile, rooted Sitka spruce cuttings of improved genotype. Tissue culture techniques, under development, would be used to produce large numbers of stock plants for stem cuttings production. Cuttings techniques, currently under commercial trial, would be used to produce the rooted plants for forest establishment.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2078
Author(s):  
Tristan K. Adams ◽  
Nqobile A. Masondo ◽  
Pholoso Malatsi ◽  
Nokwanda P. Makunga

The development of a protocol for the large-scale production of Cannabis and its variants with little to no somaclonal variation or disease for pharmaceutical and for other industrial use has been an emerging area of research. A limited number of protocols have been developed around the world, obtained through a detailed literature search using web-based database searches, e.g., Scopus, Web of Science (WoS) and Google Scholar. This article reviews the advances made in relation to Cannabis tissue culture and micropropagation, such as explant choice and decontamination of explants, direct and indirect organogenesis, rooting, acclimatisation and a few aspects of genetic engineering. Since Cannabis micropropagation systems are fairly new fields, combinations of plant growth regulator experiments are needed to gain insight into the development of direct and indirect organogenesis protocols that are able to undergo the acclimation stage and maintain healthy plants desirable to the Cannabis industry. A post-culture analysis of Cannabis phytochemistry after the acclimatisation stage is lacking in a majority of the reviewed studies, and for in vitro propagation protocols to be accepted by the pharmaceutical industries, phytochemical and possibly pharmacological research need to be undertaken in order to ascertain the integrity of the generated plant material. It is rather difficult to obtain industrially acceptable micropropagation regimes as recalcitrance to the regeneration of in vitro cultured plants remains a major concern and this impedes progress in the application of genetic modification technologies and gene editing tools to be used routinely for the improvement of Cannabis genotypes that are used in various industries globally. In the future, with more reliable plant tissue culture-based propagation that generates true-to-type plants that have known genetic and metabolomic integrity, the use of genetic engineering systems including “omics” technologies such as next-generation sequencing and fast-evolving gene editing tools could be implemented to speed up the identification of novel genes and mechanisms involved in the biosynthesis of Cannabis phytochemicals for large-scale production.


1971 ◽  
Vol 21 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Frederick Klein ◽  
William I. Jones ◽  
Bill G. Mahlandt ◽  
Ralph E. Lincoln

Sign in / Sign up

Export Citation Format

Share Document