Petrogenetic study of Mesoproterozoic volcanic rocks of North Delhi fold belt, NW Indian shield: implications for mantle conditions during Proterozoic

2014 ◽  
Vol 34 (1) ◽  
pp. 93-114 ◽  
Author(s):  
M. S. Azam ◽  
M. Shamim Khan ◽  
M. Raza
1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.


Author(s):  
A. J. R. White ◽  
B. W. Chappell

ABSTRACTS-type granites have properties that are a result of their derivation from sedimentary source rocks. Slightly more than half of the granites exposed in the Lachlan Fold Belt of southeastern Australia are of this type. These S-type rocks occur in all environments ranging from an association with migmatites and high grade regional metamorphic rocks, through an occurrence as large batholiths, to those occurring as related volcanic rocks. The association with high grade metamorphic rocks is uncommon. Most of the S-type granites were derived from deeper parts of the crust and emplaced at higher levels; hence their study provides insights into the nature of that deeper crust. Only source rocks that contain enough of the granite-forming elements (Si, Al, Na and K) to provide substantial quantities of melt can produce magmas and there is therefore a fertile window in the composition of these sedimentary rocks corresponding to feldspathic greywacke, from which granite magmas may be formed.In this paper, three contrasting S-type granite suites of the Lachlan Fold Belt are discussed. Firstly, the Cooma Granodiorite occurs within a regional metamorphic complex and is associated with migmatites. It has isotopic and chemical features matching those of the widespread Ordovician sediments that occur in the fold belt. Secondly, the S-type granites of the Bullenbalong Suite are found as voluminous contact-aureole and subvolcanic granites, with volcanic equivalents. These granites are all cordierite-bearing and have low Na2O, CaO and Sr, high Ni, strongly negative εNd and high 87Sr/86Sr, all indicative of S-type character. However, the values of these parameters are not as extreme as for the Cooma Granodiorite. Evidence is discussed to show that these granites were derived from a less mature, unexposed, deeper and older sedimentary source. Other hypotheses such as basalt mixing are discussed and can be ruled out. The Strathbogie Suite granites are more felsic but all are cordierite-bearing and have chemical and other features indicative of an immature sedimentary source. They are closely associated with cordierite-bearing volcanic rocks. The more felsic nature of the suite results in part from crystal fractionation. It is suggested that the magma may have entered this “crystal fractionation” stage of evolution because it was a slightly higher temperature magma produced from an even less mature sediment than the Bullenbalong Suite. The production of these S-type magmas is discussed in terms of vapour-absent melting of metagreywackes involving both muscovite and biotite. The production of a magma in this way is consistent with the low H2O contents and geological setting of S-type granites and volcanic rocks in the Lachlan Fold Belt.


2013 ◽  
Vol 7 (7) ◽  
pp. 2633-2639 ◽  
Author(s):  
Prabhakara Prasad P. ◽  
Satish Kumar K. ◽  
Seshunarayana T. ◽  
Rama Rao Ch.

Granites and related volcanic rocks derived from both igneous and sedimentary source materials (I- and S-types) are widely distributed in the Palaeozoic Lachlan Fold Belt of southeastern Australia. Many of the granites contain material residual from partial melting of the source rocks, or restite, which enables attempts to be made to calculate source rock compositions. A few of the S-type granites are closely related to regional metamorphic rocks and are of relatively local derivation. Most, however, are intrusive into low-grade rocks and came from deeper levels in the crust; and volcanic equivalents are extensively developed. These dominant S-type rocks have chemical and isotopic properties unlike any known locally exposed sediments. For most of the S-types, and perhaps all of them, no mantle-derived component was present in the source. Chemical and isotopic data on the I-type granites suggest a variety of deep crust sources consisting of mantle-derived material showing differing amounts of isotopic evolution, according to the time since extraction from the mantle. These data do not favour a significant sedimentary component in the sources of even the most isotopically evolved I-type rocks. An origin of the I-type source rocks by crustal underplating is favoured, so that these sources were generally infra-crustal, whereas the S-type sources were of supra-crustal origin.


2020 ◽  
Author(s):  
Debojit Talukdar ◽  
Ashish Kumar Raul ◽  
Madiwalappa Mallappa Korakoppa ◽  
Manoranjan Mohanty
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document