Rb–Sr geochronology and metamorphic history of Proterozoic to early Archean rocks north of the Cape Smith Fold Belt, Quebec

1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.

1980 ◽  
Vol 99 ◽  
pp. 107-110
Author(s):  
F Kalsbeek ◽  
H.F Jepsen

No outcrops of crystalline basement rocks are known in the eastem part of North Greenland, mapped in 1978 and 1979 by the Geological Survey of Greenland. The oldest rocks are sandstones of the Proterozoic Independence Fjord Group (Collinson, this report). However, ice-transported boulders of gneisses, amphibolites and granitic rocks indicate the presence of crystalline rocks under the Inland Ice, perhaps not far south of the ice margin (fig. 46). The nearest outcrops of crystalline basement in North Greenland occur at the head of Victoria Fjord, c. 250 km west of Independence Fjord (Hurst & Peel, 1979). These rocks have as yet not been mapped or studied.


1996 ◽  
Vol 33 (5) ◽  
pp. 676-690 ◽  
Author(s):  
M. R. Flèche ◽  
G. Camiré

The Archean Golden Pond sequence is made up of deformed and metamorphosed conglomerates, greywackes, and mafic volcanic rocks, and is overlain by ferrugineous metasedimentary rocks of the North iron formation. The clastic rocks were derived mainly from a volcanic source that had undergone weak chemical weathering. Their source area was dominated by the presence of 60–80% high-Al2O3 felsic volcanics having strongly fractionated [La/Sm]N (= 3.7 ± 0.3) and very low Ta/Th ratios (= 0.09 ± 0.02), with lesser proportions of basaltic (10–30%) and ultramafic volcanic rocks (1–10%). The ferrugineous metasedimentary rocks can be modelled by mixing 20–40% siliciclastic material, of the composition of the average Golden Pond greywacke, with an Fe- and Si-rich precipitate (molecular Fe/Si = 0.6 ± 0.2). The high-Al2O3 felsic source rocks were most likely produced by subduction processes within an oceanic arc environment, but the mafic and ultramafic volcanic rocks were derived by different processes from an asthenospheric mantle source, possibly in an oceanic rift environment. Therefore, it is suggested that the ultramafic, mafic, and felsic volcanic rocks were brought to the same erosional level by dissection of the arc system and rapid exhumation of the felsic arc lithologies and the deeper ocean floor. Intrabasinal hydrothermal activity associated with contemporaneous mafic volcanism and (or) graben development may have also been responsible for the local production of the Fe-rich precipitates of the North iron formation.


1992 ◽  
Vol 29 (10) ◽  
pp. 2133-2145 ◽  
Author(s):  
Donald T. James ◽  
James K. Mortensen

Archean rocks in the Fenton Lake – Brown Lake area, southern Slave Province, are subdivided into two lithotectonic domains: a supracrustal domain, which consists mainly of the Archean Yellowknife Supergroup, and a gneiss–granite domain. The latter is composed of gneissic and metaigneous rocks of the Sleepy Dragon Complex, determined to be basement to the Yellowknife Supergroup, and granite plutons, including the 2641 ± 3.5 Ma Suse Lake granite and the 2583.5 ± 1 Ma Morose Granite. Volcanic rocks of the Cameron River Belt and greywacke–mudstone turbiditic metasedimentary rocks of the Burwash Formation constitute the supracrustal domain.A late Archean, amphibolite- to greenschist-facies, ductile to local brittle, high-strain zone separates the domains. Kinematic indicators demonstrate that the zone experienced two kinematically opposed episodes of displacement. The older episode involved pre- to synthermal peak thrusting of the supracrustal rocks over the gneiss–granite domain. Thrusting is kinematically and temporally consistent with late Archean, pre- to synthermal peak, regional contractional deformation. Structural and metamorphic relations and kinematic indicators suggest that thrusting and regional contraction were followed shortly by intrusion of the peraluminous Morose Granite and thereafter by a late syn- to post-thermal peak episode of extension, resulting in tectonic unroofing of the gneiss–granite domain.The sequential history of contraction and attendant regional metamorphism, granite intrusion, and, ultimately, extensional collapse, which is documented in the Archean rocks in the area, is a common feature of Phanerozoic collisional orogens. Moreover, the tectonic history of the gneiss–granite domain is broadly similar to the evolution of metamorphic core complexes in the North American Cordillera.


1989 ◽  
Vol 26 (1) ◽  
pp. 23-30 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus ◽  
W. Weber

The Archean Rice Lake greenstone belt in southeastern Manitoba is made up of mafic to felsic volcanic rocks and associated intrusive and metasedimentary rocks. The belt is flanked to the north by the Wanipigow River granitic complex and to the south by the Manigotagan gneissic belt. The Ross River quartz diorite pluton is intrusive into the centre of the greenstone belt. U–Pb zircon ages indicate a major volcanic and plutonic event in the area at 2730 Ma. Ages for two volcanic units of the Rice Lake Group are 2731 ± 3 and 2729 ± 3 Ma. The Ross River pluton yields an age of 2728 ± 8 Ma and the Gunnar porphyry gives an age of 2731 ± 13 Ma; both intrude rocks of the Rice Lake Group. Granitic rocks of the Wanipigow River granitic complex give ages of 2731 ± 10 and 2880 ± 9 Ma, while a post-tectonic granite in the Manigotagan gneissic belt has an age of 2663 ± 7 Ma.


2017 ◽  
Vol 155 (1) ◽  
pp. 149-173 ◽  
Author(s):  
EN MENG ◽  
CHAO-YANG WANG ◽  
ZHUANG LI ◽  
YAN-GUANG LI ◽  
HONG YANG ◽  
...  

AbstractIn this paper we present new petrological and whole-rock geochemical data for the Palaeoproterozoic metasedimentary rocks in the upper part of the Ji'an Group within the Jiao–Liao–Ji Belt, China, as well as zircon U–Pb age dates andin situLu–Hf isotope data. The new data improve our understanding of the original nature of the metasedimentary rocks, further providing insights into their tectonic setting and the evolutionary history of the northern segment of the Jiao–Liao–Ji Belt. The zircons can be divided into two groups, viz., one of magmatic origin and the other of metamorphic origin. Zircon U–Pb dating gave mean or statistical peak ages for the magmatic zircons at 2035, 2082, 2178, 2343–2421, 2451–2545, 2643–2814 and 2923–3446 Ma, and mean peak ages for the metamorphic zircons at 1855 and 1912 Ma, which indicate a maximum depositional age of 2.03 Ga and two-stage metamorphic events atc. 1.91 and 1.85 Ga for the metasedimentary rocks. Geochemical data show that (1) the protoliths of these rocks were mainly sandstones, greywackes and claystones, together with some shales; (2) the main sources of the sedimentary material were Palaeoproterozoic granites and acid volcanic rocks, with minor contributions from Archaean granitic rocks; and (3) the sediments were deposited in an active continental margin setting. Moreover, along the northeastern margin of the Eastern Block of the North China Craton there is evidence of ancient crustal materials as old as 3.76 Ga, and multiple crustal growth events at 3.23–3.05, 2.80–2.65, 2.54–2.45 and 2.28–2.08 Ga.


Author(s):  
Peter R. Dawes ◽  
Bjørn Thomassen ◽  
T.I. Hauge Andersson

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Dawes, P. R., Thomassen, B., & Andersson, T. H. (2000). A new volcanic province: evidence from glacial erratics in western North Greenland. Geology of Greenland Survey Bulletin, 186, 35-41. https://doi.org/10.34194/ggub.v186.5213 _______________ Mapping and regional geological studies in northern Greenland were carried out during the project Kane Basin 1999 (see Dawes et al. 2000, this volume). During ore geological studies in Washington Land by one of us (B.T.), finds of erratics of banded iron formation (BIF) directed special attention to the till, glaciofluvial and fluvial sediments. This led to the discovery that in certain parts of Daugaard-Jensen Land and Washington Land volcanic rocks form a common component of the surficial deposits, with particularly colourful, red porphyries catching the eye. The presence of BIF is interesting but not altogether unexpected since BIF erratics have been reported from southern Hall Land just to the north-east (Kelly & Bennike 1992) and such rocks crop out in the Precambrian shield of North-West Greenland to the south (Fig. 1; Dawes 1991). On the other hand, the presence of volcanic erratics was unexpected and stimulated the work reported on here.


1874 ◽  
Vol 1 (5) ◽  
pp. 205-210
Author(s):  
Edward Hull

Carboniferous Period.—The Lower Carboniferous rocks, both of the North of England, of Scotland, and of Ireland, afford examples of contemporaneous volcanic action of considerable intensity. The so-called “toad-stones” of Derbyshire, and the great sheets of melaphyre, porphyrite, and ashes of the central valley of Scotland, forming the Kilpatrick, Campsie, and Dairy Hills, appear to have been erupted over the bed of the same sea as that in which were poured out similar materials in County Limerick, forming the well-known Carboniferous volcanic rocks of “the Limerick Basin.” These rocks have been already so fully described by several observers, that I shall confine myself to a very short description, such as is essential to the brief history of volcanic action which I am here endeavouring to draw up.


1993 ◽  
Vol 130 (6) ◽  
pp. 835-846 ◽  
Author(s):  
S. R. Noble ◽  
R. D. Tucker ◽  
T. C. Pharaoh

AbstractThe U-Pb isotope ages and Nd isotope characteristics of asuite of igneous rocks from the basement of eastern England show that Ordovician calc-alkaline igneous rocks are tectonically interleaved with late Precambrian volcanic rocks distinct from Precambrian rocks exposed in southern Britain. New U-Pb ages for the North Creake tuff (zircon, 449±13 Ma), Moorby Microgranite (zircon, 457 ± 20 Ma), and the Nuneaton lamprophyre (zircon and baddeleyite, 442 ± 3 Ma) confirm the presence ofan Ordovician magmatic arc. Tectonically interleaved Precambrian volcanic rocks within this arc are verified by new U-Pb zircon ages for tuffs at Glinton (612 ± 21 Ma) and Orton (616 ± 6 Ma). Initial εNd values for these basement rocks range from +4 to - 6, consistent with generation of both c. 615 Ma and c. 450 Ma groups of rocksin continental arc settings. The U-Pb and Sm-Nd isotope data support arguments for an Ordovician fold/thrust belt extending from England to Belgium, and that the Ordovician calc-alkaline rocks formed in response to subductionof Tornquist Sea oceanic crust beneath Avalonia.


Sign in / Sign up

Export Citation Format

Share Document