Linear Friction Welding of Dissimilar Materials 316L Stainless Steel to Zircaloy-4

2018 ◽  
Vol 49 (5) ◽  
pp. 1641-1652 ◽  
Author(s):  
P. Wanjara ◽  
B. S. Naik ◽  
Q. Yang ◽  
X. Cao ◽  
J. Gholipour ◽  
...  
2010 ◽  
Vol 528 (2) ◽  
pp. 680-690 ◽  
Author(s):  
Imran Bhamji ◽  
Michael Preuss ◽  
Philip L. Threadgill ◽  
Richard J. Moat ◽  
Adrian C. Addison ◽  
...  

2016 ◽  
Vol 879 ◽  
pp. 2072-2077 ◽  
Author(s):  
Priti Wanjara ◽  
Javad Gholipour ◽  
Kosuke Watanabe ◽  
Koji Nezaki ◽  
Y. Tian ◽  
...  

Linear friction welding (LFW), an emerging automated technology, has potential for solid-state joining of dissimilar materials (bi-metals) to enable tailoring of the mechanical performance, whilst limiting the assembly weight for increased fuel efficiency. However, bi-metallic welds are quite difficult to manufacture, especially when the material combinations can lead to the formation of intermetallic (brittle) phases at the interface, such as the case with assembly of Ti base alloys with Ni base superalloys. The intermetallic phase, once formed, lowers the performance of the as-manufactured properties and its growth during elevated temperature service can lead to unreliable performance. In this project, it was demonstrated that linear friction welding can be applied to join Ti-6%Al-4%V (workhorse Ti alloy) to INCONEL® 718 (workhorse Ni-base superalloy) with minimized interaction at the interface. Of particular merit is that no intermediate layer (between the Ti alloy and Ni-base superalloy) was needed for bonding. Characterization of the bi-metallic weld included macro-and microstructural examination of the flash and interface regions and evaluation of the hardness.


2016 ◽  
Vol 31 (16) ◽  
pp. 2115-2122 ◽  
Author(s):  
Antonello Astarita ◽  
Fabio Scherillo ◽  
Michele Curioni ◽  
Paolo Aprea ◽  
Filomena Impero ◽  
...  

2019 ◽  
Vol 269 ◽  
pp. 45-51 ◽  
Author(s):  
Tomoki Matsuda ◽  
Hironobu Adachi ◽  
Tomokazu Sano ◽  
Ryo Yoshida ◽  
Hisashi Hori ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1537
Author(s):  
Beata Skowrońska ◽  
Tomasz Chmielewski ◽  
Mariusz Kulczyk ◽  
Jacek Skiba ◽  
Sylwia Przybysz

The paper presents the microstructural investigation of a friction-welded joint made of 316L stainless steel with an ultrafine-grained structure obtained by hydrostatic extrusion (HE). Such a plastically deformed material is characterized by a metastable state of energy equilibrium, increasing, among others, its sensitivity to high temperatures. This feature makes it difficult to weld ultra-fine-grained metals without losing their high mechanical properties. The use of high-speed friction welding and a friction time of <1 s reduced the scale of the weakening of the friction joint in relation to result obtained in conventional rotary friction welding. The study of changes in the microstructure of individual zones of the friction joint was carried out on an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) analysis system. The correlation between the microstructure and hardness of the friction joint is also presented. The heat released during the high-speed friction welding initiated the process of dynamic recrystallization (DRX) of single grains in the heat-affected zone (HAZ). The additional occurrence of strong plastic deformations (in HAZ) during flash formation and internal friction (in the friction weld and high-temperature HAZ) contributed to the formation of a highly deformed microstructure with numerous sub-grains. The zones with a microstructure other than the base material were characterized by lower hardness. Due to the complexity of the microstructure and its multifactorial impact on the properties of the friction-welded joint, strength should be the criterion for assessing the properties of the joint.


Sign in / Sign up

Export Citation Format

Share Document