Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

2019 ◽  
Vol 50 (8) ◽  
pp. 3478-3485 ◽  
Author(s):  
Gaixia Wang ◽  
Huabei Peng ◽  
Linglin Xiang ◽  
Jungang Feng ◽  
Yuhua Wen
Author(s):  
Arun Veeramani ◽  
John Crews ◽  
Gregory D. Buckner

This paper describes a novel approach to modeling hysteresis using a Hysteretic Recurrent Neural Network (HRNN). The HRNN utilizes weighted recurrent neurons, each composed of conjoined sigmoid activation functions to capture the directional dependencies typical of hysteretic smart materials (piezoelectrics, ferromagnetic, shape memory alloys, etc.) Network weights are included on the output layer to facilitate training and provide statistical model information such as phase fraction probabilities. This paper demonstrates HRNN-based modeling of two- and three-phase transformations in hysteretic materials (shape memory alloys) with experimental validation. A two-phase network is constructed to model the displacement characteristics of a shape memory alloy (SMA) wire under constant stress. To capture the more general thermo-mechanical behavior of SMAs, a three-phase HRNN model (which accounts for detwinned Martensite, twinned Martensite, and Austensite phases) is developed and experimentally validated. The HRNN modeling approach described in this paper readily lends itself to other hysteretic materials and may be used for developing real-time control algorithms.


1994 ◽  
Vol 360 ◽  
Author(s):  
R. Kainuma ◽  
N. Ono ◽  
K. Ishida

AbstractThe basic concept underlying the alloy design and microstructural control method utilised in developing a new type of β(B2)+ γ (A1) two-phase ductile shape memory alloy in the Ni-Al base systems is briefly reviewed. The characteristic features of the shape memory effect (SME) in the Ni-Al-Fe and Ni-Al-Fe-Mn alloys are reported with particular reference to the transformation and deformation temperatures, the volume fractions of the γ phase, the morphology of the β + γ structure and the effect of cycling. Training by cycling treatment has a significant effect on the degree of shape recovery and pseudo-elasticity in the β + γ two-phase alloys. These duplex β + γ alloys also exhibit a combination of relatively high damping capacity and high yield strength. It is emphasized that these alloys could be expected to fill the need for a new group of shape memory alloys which operate at elevated temperatures over 100°C.


2015 ◽  
Vol 833 ◽  
pp. 67-70
Author(s):  
Shui Yuan Yang ◽  
Cui Ping Wang ◽  
Yu Su ◽  
Xing Jun Liu

The evolutions of microstructure and phase transformation behavior of Cu-Al-Fe-Nb/Ta high-temperature shape memory alloys under the quenched and aged states were investigated in this study, including Cu-10wt.% Al-6wt.% Fe, Cu-10wt.% Al-4wt.% Fe-2wt.% Nb and Cu-10wt.% Al-4wt.% Fe-2wt.% Ta three types alloys. The obtained results show that after quenching, Cu-10wt.% Al-6wt.% Fe alloy exhibits two-phase microstructure of β′1 martensite + Fe (Al,Cu) phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy also has two-phase microstructure of (β′1 + γ′1 martensites) + Nb (Fe,Al,Cu)2 phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Ta alloy is consisted of three-phase of (β′1 + γ′1 martensites) + Fe (Al,Cu,Ta) + Ta2(Al,Cu,Fe)3 phases. However, α (Cu) phase precipitates after aging for three alloys; and Fe (Al,Cu,Nb) phase is also present in Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy. All the studied alloys exhibit complicated martensitic transformation behaviors resulted from the existence of two types martensites (β′1 and γ′1).


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1939 ◽  
Author(s):  
Gheorghe Gurau ◽  
Carmela Gurau ◽  
Felicia Tolea ◽  
Vedamanickam Sampath

Severe plastic deformation (SPD) is widely considered to be the most efficient process in obtaining ultrafine-grained bulk materials. The aim of this study is to examine the effects of the SPD process on Ni-Fe-Ga ferromagnetic shape memory alloys (FSMA). High-speed high-pressure torsion (HSHPT) was applied in the as-cast state. The exerted key parameters of deformation are described. Microstructural changes, including morphology that were the result of processing, were investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy was used to study the two-phase microstructure of the alloys. The influence of deformation on microstructural features, such as martensitic plates, intragranular γ phase precipitates, and grain boundaries’ dependence of the extent of deformation is disclosed by transmission electron microscopy. Moreover, the work brings to light the influence of deformation on the characteristics of martensitic transformation (MT). Vickers hardness measurements were carried out on disks obtained by SPD so as to correlate the hardness with the microstructure. The method represents a feasible alternative to obtain ultrafine-grained bulk Ni-Fe-Ga alloys.


2014 ◽  
Vol 213 ◽  
pp. 114-118
Author(s):  
Osman Adiguzel

Shape memory effect is a peculiar property exhibited by certain alloy system. This behavior is facilitated by martensitic transformation, and shape memory properties are intimately related to the microstructures of alloys; in particular, the morphology and orientation relationship between the various martensite variants. Martensitic transformation occurs in thermal manner, on cooling the materials from high temperature parent phase region. Thermal induced martensite called self-accommodated martensite or multivariant martensite occurs as multivariant martensite in self-accommodating manner and consists of lattice twins. Shape memory alloys are deformed in low temperature martensitic phase condition, and deformation proceeds through a martensite variant reorientation. Copper based alloys exhibit this property in metastable β - phase region.


Sign in / Sign up

Export Citation Format

Share Document