A Systematic Investigation of Precipitates in Matrix and at Grain Boundaries in an Alumina-Forming Austenitic Steel During Creep Testing at 700 °C

2020 ◽  
Vol 51 (8) ◽  
pp. 4186-4194 ◽  
Author(s):  
Hongyuan Wen ◽  
Bingbing Zhao ◽  
Xianping Dong ◽  
Feng Sun ◽  
Lanting Zhang
Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2767 ◽  
Author(s):  
Chenchen Jiang ◽  
Qiuzhi Gao ◽  
Hailian Zhang ◽  
Ziyun Liu ◽  
Huijun Li

Microstructural evolutions of the 4Al alumina-forming austenitic steel after cold rolling with different reductions from 5% to 30% and then annealing were investigated using electron backscattering diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile properties and hardness were also measured. The results show that the average grain size gradually decreases with an increase in the cold-rolling reduction. The low angle grain boundaries (LAGBs) are dominant in the cold-rolled samples, but high angle grain boundaries (HAGBs) form in the annealed samples, indicating that the grains are refined under the action of dislocations. During cold rolling, high-density dislocations are initially introduced in the samples, which contributes to a large number of dislocations remaining after annealing. With the sustaining increase in cold-rolled deformation, the samples exhibit more excellent tensile strength and hardness due to the decrease in grain size and increase in dislocation density, especially for the samples subjected to 30% cold-rolling reduction. The contribution of dislocations on yield strength is more than 60%.


Materia Japan ◽  
2018 ◽  
Vol 57 (12) ◽  
pp. 618-618
Author(s):  
M. Ochi ◽  
K. Sato ◽  
R. Teranishi ◽  
Y. Sato ◽  
K. Kaneko ◽  
...  

2019 ◽  
Vol 946 ◽  
pp. 357-361
Author(s):  
Vladimir I. Pastukhov ◽  
Irina A. Portnykh ◽  
Mikhail L. Lobanov

Different mesostructural elements of 16Cr-19Ni-2Mo-2Mn-Nb-Ti-B austenitic steel have been examined after neutron irradiation to damage dose up to 82 dpa by scanning electron microscopy using orientation microscopy (EBSD). Radiation porosity with maximum void size up to 200 nm was observed in austenitic steel structure after neutron irradiation. Nonuniformity, related to mesostructural elements, such as general grain boundaries, special CSL boundaries Σ3 (twins), areas with high density of low-angle boundaries, is typical for radiation porosity.


Author(s):  
B. Z. Margolin ◽  
A. M. Morozov ◽  
N. E. Pirogova ◽  
M. N. Grigoriev

The paper proposes methods for assessing the strength of grain boundaries according to the results of testing miniature specimens by impact bending. Results of bending at low temperature are given to assess the strength of grain boundaries in austenitic chromium-nickel steels. The test temperature was determined when the proportion of brittle intergranular fracture of embrittled chromium-nickel steel 10Kh18N9 is at least 90%. Three types of miniature specimens of different geometric shapes have been developed, providing approximately the same absorbed energy when tested for impact bending. It is shown when it is necessary to use such miniature specimens.


2017 ◽  
Vol 36 (7) ◽  
pp. 725-732
Author(s):  
Hongbo Liu ◽  
Jianhua Liu ◽  
Bowei Wu ◽  
Xiaofeng Su ◽  
Shiqi Li ◽  
...  

AbstractThe influence of Ti addition (~0.10 wt%) on hot ductility of as-cast high-manganese austenitic steels has been examined over the temperature range 650–1,250 °C under a constant strain rate of 10−3 s−1 using Gleeble3500 thermal simulation testing machine. The fracture surfaces and particles precipitated at different tensile temperatures were characterized by means of scanning electron microscope and X-ray energy dispersive spectrometry (SEM–EDS). Hot ductility as a function of reduction curves shows that adding 0.10 wt% Ti made the ductility worse in the almost entire range of testing temperatures. The phases’ equilibrium diagrams of precipitates in Ti-bearing high-Mn austenitic steel were calculated by the Thermo-Calc software. The calculation result shows that 0.1 wt% Ti addition would cause Ti(C,N) precipitated at 1,499 °C, which is higher than the liquidus temperature of high-Mn austenitic steel. It indicated that Ti(C,N) particles start forming in the liquid high-Mn austenitic steel. The SEM–EDS results show that Ti(C,N) and TiC particles could be found along the austenite grain boundaries or at triple junction, and they would accelerate the extension of the cracks along the grain boundaries.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang-Yu Hung ◽  
Yu Bai ◽  
Tomotsugu Shimokawa ◽  
Nobuhiro Tsuji ◽  
Mitsuhiro Murayama

AbstractIn polycrystalline materials, grain boundaries are known to be a critical microstructural component controlling material’s mechanical properties, and their characters such as misorientation and crystallographic boundary planes would also influence the dislocation dynamics. Nevertheless, many of generally used mechanistic models for deformation twin nucleation in fcc metal do not take considerable care of the role of grain boundary characters. Here, we experimentally reveal that deformation twin nucleation occurs at an annealing twin (Σ3{111}) boundary in a high-Mn austenitic steel when dislocation pile-up at Σ3{111} boundary produced a local stress exceeding the twining stress, while no obvious local stress concentration was required at relatively high-energy grain boundaries such as Σ21 or Σ31. A periodic contrast reversal associated with a sequential stacking faults emission from Σ3{111} boundary was observed by in-situ transmission electron microscopy (TEM) deformation experiments, proving the successive layer-by-layer stacking fault emission was the deformation twin nucleation mechanism, different from the previously reported observations in the high-Mn steels. Since this is also true for the observed high Σ-value boundaries in this study, our observation demonstrates the practical importance of taking grain boundary characters into account to understand the deformation twin nucleation mechanism besides well-known factors such as stacking fault energy and grain size.


Sign in / Sign up

Export Citation Format

Share Document