Activity of Ferric Oxide in Steelmaking Slag

2010 ◽  
Vol 41 (2) ◽  
pp. 414-419 ◽  
Author(s):  
Somnath Basu ◽  
Ashok Kumar Lahiri ◽  
Seshadri Seetharaman
2017 ◽  
Vol 2 (77) ◽  
Author(s):  
N.N. Sinitsyn ◽  
D.S. Revyakina ◽  
D.S. Prokopeva ◽  
A.A. Kostyleva ◽  
V.V. Plashenkov

Author(s):  
Yury Rubanov ◽  
Yury Rubanov ◽  
Yulia Tokach ◽  
Yulia Tokach ◽  
Marina Vasilenko ◽  
...  

There was suggested a method of obtaining a complex adsorbent with magnetic properties for the oil spill clean-up from the water surface by means of controlled magnetic field. As magnetic filler a finely-dispersed iron-ore concentrate in the form of magnetite, obtained by wet magnetic separation of crushed iron ore, was suggested. As an adsorbing component the disintegrating electric-furnace steelmaking slag, obtained by dry air-cooling method, was selected. The mass ratio of components slag:magnetite is 1(1,5÷2,0). For cleaning up emergency oil spills with the suggested magnetic adsorbent a facility, which is installed on a twin-hulled oil recovery vessel, was designed. The vessel contains a rectangular case between the vessel hulls with inlet and outlet for the treated water, the bottom of which is a permanently moving belt. Above the belt, at the end point of it there is an oil-gathering drum with magnetic system. The adsorbent is poured to oil-products layer from a hopper, provided with drum feeder. Due to the increased bulk weight the adsorbent sinks rapidly into the oil layer on the water surface. If the large non-floating flocculi are formed, they sink and sedimentate on the moving belt and are moved to the oil-gathering drum. The saturated adsorbent is removed from the drum surface with a scraper, connected with a gutter, with contains a rotating auger.


2018 ◽  
Vol 14 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Isaac Yves Lopes de Macedo ◽  
Morgana Fernandes Alecrim ◽  
Luane Ferreira Garcia ◽  
Aparecido Ribeiro de Souza ◽  
Wallans Torres Pio dos Santos ◽  
...  

2019 ◽  
Vol 26 (09) ◽  
pp. 1950058
Author(s):  
SADEQ H. LAFTA ◽  
ALI ABDULRAHMAN TAHA ◽  
MUHAMMAD M. FARHAN ◽  
SHAIMA Y. ABDULFATTAH

Nanoparticles of alpha ferric oxide ([Formula: see text]-Fe2O3) were prepared by the hydrothermal method. Structural properties of [Formula: see text]-Fe2O3 were determined by XRD, SEM and AFM measurements. The particles had a good matching with standard pattern. Average particle size was about 90[Formula: see text]nm and the distribution extended from about 20[Formula: see text]nm to 120[Formula: see text]nm. Biocompatibility study of ferric oxide nanoparticles against bacteria, parasites, tumor cell line and normal cells was determined. No antibacterial activity was observed for the concentration, of ferric oxide nanoparticles in distilled water, up to 1.5[Formula: see text]mg/ml vs. E. coli and S. aureus. Moreover, MTT assay was used to determine the cytotoxicity against parasites and cells. Intermediate cytotoxicity (53.30%) of 1.5[Formula: see text]mg/ml of prepared nanoparticles was noted against L. tropica, while weak cytotoxicity of 5.20% was observed against L. donovani at the same concentration of ferric oxide nanoparticles. On the other hand, the prepared nanoparticles revealed low cytotoxicity (47.28%) against SR tumor cell line, while no cytotoxicity was shown against lymphocytes, as a model of normal cells.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


Sign in / Sign up

Export Citation Format

Share Document