scholarly journals The Quantitative Effect of Blast Furnace Slag Composition and Temperature on the Kinetics of Potassium Evaporation

2020 ◽  
Vol 51 (6) ◽  
pp. 2711-2723
Author(s):  
Anton Andersson ◽  
Hesham Ahmed ◽  
Lena Sundqvist Ökvist ◽  
Bo Björkman

AbstractIncreased in-plant recycling and lower quality raw material in terms of alkali content drive the alkali load in the blast furnace (BF) to higher levels. Excessive load of alkalis, primarily potassium, has several negative effects on the BF operation, which necessitates means to control the removal of potassium from the BF. One method to improve the removal is by increasing the potassium retention in the slag, which is controlled by the evaporation kinetics of potassium. Although several authors have studied factors affecting the evaporation rate, none of these studies have quantitatively investigated the effect of these parameters and attempted to relate these effects to slags from the industry. In the present work, a full-factorial design of experiments with three factors (B2 basicity, MgO content, and temperature) was performed, studying the evaporation of potassium from synthetic BF slag. The results suggested that multiple linear regression is suitable to describe the evaporation kinetics of potassium within the boundaries of the design of experiments. However, extrapolating to industrial slags of different compositions and additional slag components is best performed utilizing the corrected optical basicity. The corrected optical basicity showed a linear relation to the evaporation kinetics of potassium, which was related to the correlation between diffusivity and corrected optical basicity.

2006 ◽  
Vol 103 (2) ◽  
pp. 76-81
Author(s):  
C. Perin Filho ◽  
D. Tassinari Miranda ◽  
E. Medeiros Milanez ◽  
E. Luiz Massanori Harano ◽  
E. Torres Bispo dos Santos ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2014 ◽  
Vol 1052 ◽  
pp. 392-395 ◽  
Author(s):  
Li Xia He

High Ti-bearing blast furnace (BF) slag is the smelting waste of vanadium titano-magnetite. It has great production but low utilization. The high Ti-bearing BF slag is used in building materials industry, which recycles waste material, saves resources and energy, benefiting environmental protection and achieving sustainable development of resources. Study on the recycling of high Ti-bearing BF slag will be an important subject of our researches in future.


2006 ◽  
Vol 66 (3-4) ◽  
pp. 198-207 ◽  
Author(s):  
Raúl Molina ◽  
Fernando Martínez ◽  
Juan Antonio Melero ◽  
David H. Bremner ◽  
Anand G. Chakinala

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 843
Author(s):  
Ferawati Ferawati ◽  
Izalin Zahari ◽  
Malin Barman ◽  
Mohammed Hefni ◽  
Cecilia Ahlström ◽  
...  

Yellow pea and faba bean are potential candidates to replace soybean-based ingredients due to their suitability for cultivation in the northern hemisphere, non-genetically modified organisms cultivation practice and low risk of allergenicity. This study examined the functionality of local yellow pea and faba bean protein isolates/concentrate as meat analogue products. The most critical factors affecting the texture properties of meat analogue were also determined. Extrusion was used to produce high-moisture meat analogues (HMMAs) from yellow pea and faba bean protein isolates/concentrates and HMMAs with fibrous layered structures was successfully produced from both imported commercial and local sources. The texture properties of the HMMA produced were mainly affected by the ash, fiber and protein content and water-holding capacity of the source protein. Three extrusion process parameters (target moisture content, extrusion temperature, screw speed), also significantly affected HMMA texture. In conclusion, functional HMMA can be produced using protein isolates derived from locally grown pulses.


Sign in / Sign up

Export Citation Format

Share Document