scholarly journals Enhancement of the Schottky Barrier Height using a Nitrogen-Rich Tungsten Nitride Thin Film for the Schottky Contacts on AlGaN/GaN Heterostructures

2008 ◽  
Vol 37 (5) ◽  
pp. 624-627 ◽  
Author(s):  
Chung-Yu Lu ◽  
Edward Yi Chang ◽  
Jui-Chien Huang ◽  
Chia-Ta Chang ◽  
Mei-Hsuan Lin ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


2011 ◽  
Vol 50 ◽  
pp. 036603 ◽  
Author(s):  
Masashi Kato ◽  
Hidenori Ono ◽  
Masaya Ichimura ◽  
Gan Feng ◽  
Tsunenobu Kimoto

2005 ◽  
Vol 864 ◽  
Author(s):  
M. Li ◽  
W. A. Anderson

AbstractMetal-Semiconductor-Metal photodetectors (MSM-PD's) and simple Schottky diodes were fabricated using a low temperature (LT) technique to greatly reduce the device dark current. LT processing for metal deposition increased Schottky barrier height by improving the interface between metal and semiconductor to reduce the leakage current of the device. The structure consists of a 20 Å oxide over the active area to passivate surface states, a thicker oxide under contact pads to reduce dark current and the interdigitated Schottky contacts. A comparison was made for Schottky metal deposited with the substrate at 25 °C or -50 °C (LT). The devices fabricated using the LT process had better I-V characteristics compared to detectors fabricated using the standard room temperature (RT) metal deposition technique. The dark current for the LT film was found to be one to three orders lower in magnitude compared to the film deposited at RT. In one case, for example, the dark current was significantly reduced from 1.69 nA to 4.58 pA at 1.0 V. The active area for the device was determined to be 36 × 50 μm2 with 4 μm electrode width and 4 μm electrode spacing. Additionally, LT-MSM-PD's exhibited an excellent linear relationship between the photo-current and the incident light power. The Schottky barrier height for LT processing was found to be 0.79 eV; however, this value was 0.1 eV more than that of the same contact obtained by RT processing.


2015 ◽  
Vol 24 (7) ◽  
pp. 077306
Author(s):  
Jiang-Bin Wei ◽  
Xiao-Wei Chi ◽  
Chao Lu ◽  
Chen Wang ◽  
Guang-Yang Lin ◽  
...  

1992 ◽  
Vol 260 ◽  
Author(s):  
ZS. J. Horváth

ABSTRACTExperimental capacitance-voltage (C-V) characteristics are presented for Au/n-GaAs Schottky contacts. The deviation of the obtained C-V characteristics from the theoretical one including the linear regions of the 1/Ca-V plot may be explained by either the normal or the lognormal lateral distribution of the barrier height. It is concluded that from physical point of view the lognormal lateral distribution of the Schottky barrier height proposed first in this work, is more likely than the normal distribution.


1986 ◽  
Vol 77 ◽  
Author(s):  
J. Wong ◽  
S.-N. Mei ◽  
T.-M. Lu

ABSTRACTWe have employed a nozzle jet expansion technique to deposit Al thin film on chemically cleaned Si(n) surface. Pure Al is evaporated in a graphite crucible at a temperature of 15 50°C and is then ejected through a small nozzle into a vacuum region of 10-6 Torr. The Schottky barrier height of the as-deposited films is measured (using the J-V technique) to be 0.77eV, which is substantially higher than that obtained by conventional evaporation-deposition techniques(≤0.68eV). Our result suggests that an intimate Al/Si(n) contact has been formed during the jet expansion deposition of Al films.During the deposition, the Al jet beam can be partially ionized by electron bombardment. It is shown that the Schottky barrier height remain unchanged if a bias potential of V s0.5KeV is applied to the substrate during deposition. For Va >0.5 KeV, the diode became leaky and the barrier height was reduced. The energetic of the jet beam, with and without post ionization and acceleration, is discussed with respect to thin film and interface formation.


Sign in / Sign up

Export Citation Format

Share Document