scholarly journals Investigation of Metallurgical and Mechanical Properties of Laser Beam Welded and Post-weld Heat Treated DP1400 Steel

Author(s):  
Raghawendra P. S. Sisodia ◽  
Marcell Gáspár

AbstractIn this paper, the effect of autogenous diode laser beam welding (LBW) and the influence of post weld heat treatment (PWHT) on microstructural changes and mechanical properties of dual phase DP1400 high strength steel (HSS) butt welded joint are studied and presented. LBW and PWHT were performed on 1 mm sheet thickness using 3 and 5 kW diode laser systems, respectively. The technology ensures high quality welded joints in HSS and facilitate the welding and PWHT by same process and equipment. Microstructure evaluation was performed using optical and scanning electron microscopy. Related to the mechanical properties, tensile tests, fractography of fractured tensile specimens and three-point bending tests were carried out. The microstructural examination presented the constituents of martensite and ferrite in the heat affected zone (HAZ) and fusion zone (FZ) consists of predominantly lath martensite with ferrite and some bainite. Tempered martensite was observed after PWHT in HAZ and FZ. The hardening peaks observed in coarse-grained and fine-grained subzones were significantly reduced by the novelty technology, i.e. PWHT and thereby cold cracking sensitivity. The fractography of the fractured tensile specimens showed characteristic features of ductile failure.

2013 ◽  
Vol 685 ◽  
pp. 259-263 ◽  
Author(s):  
K. Subbaiah ◽  
Geetha Manivasagam ◽  
B. Shanmugarajan ◽  
S.R. Koteswara Rao

Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam welding at 3.5 kW incident power was conducted autogenously on 5 mm thick 5083-H321 aluminum alloy plates at different welding speeds. The mechanical properties and microstructural characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Both yield stress and tensile strength of the laser beam welded joint at the optimum welding speed were 88 % of base metal values. Experimental results indicate that the tensile strength and hardness of laser beam welds are affected by the variation of the intermetallic compounds.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1907 ◽  
Author(s):  
Lin-Jie Zhang ◽  
Jun-Yu Pei ◽  
Jian Long ◽  
Miao-Xia Xie ◽  
Xiang-Tao Shang ◽  
...  

As one of the relatively new titanium (Ti) alloys in the engineering field, β-Ti alloy–Ti55531 has attracted a great deal of attention due to its excellent mechanical properties, while a few research papers on weldability and the post-weld heat treatment (PWHT) process of Ti55531 have been reported. Based on an orthogonal experiment design, the parameters of laser beam welding (LBW) of Ti55531 alloy with a thickness of 2 mm were optimized. Moreover, the influences of welding parameters and PWHT on the microstructures and performance of the laser-welded joint of Ti55531 were analyzed. The results showed that, for microstructures in different zones of as-welded joints of Ti55531: three forms of α phases (i.e., equiaxial αp phase, lamellar αS phase, and αGB phase at grain boundaries) were observed in base metal (BM); in the heat affected zone (HAZ), part of lamellar αS phase had dissolved while equiaxial αp phase had grown; the fusion zone (FZ) mainly consisted of β phase, which presented as coarse columnar crystals. After the PWHT process, the microstructures of the welded joint were changed: in the BM zone, α phase at grain boundary disappeared and lamellar α phase decreased; in the HAZ, the edge of αp phase obviously dissolved; in the FZ, plenty of compact needle-like α phases were observed. The tensile strength of the as-welded joint was about 940 MPa and then increased to 1161 MPa after PWHT, which were 78.4% and 96.8% of that of the original BM respectively. The fracture position transformed from the interface between the FZ and HAZ to the BM during tensile tests after PWHT.


2021 ◽  
pp. 111257
Author(s):  
Theano N. Examilioti ◽  
Nikolai Kashaev ◽  
Volker Ventzke ◽  
Benjamin Klusemann ◽  
Nikolaos D. Alexopoulos

2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5622
Author(s):  
Shenggui Liu ◽  
Mindong Lyu ◽  
Chao Wang

Graphene foams (GrFs) have been widely used as structural and/or functional materials in many practical applications. They are always assembled by thin and thick graphene sheets with multiple thicknesses; however, the effect of this basic structural feature has been poorly understood by existing theoretical models. Here, we propose a coarse-grained bi-modal GrF model composed of a mixture of 1-layer flexible and 8-layer stiff sheets to study the mechanical properties and deformation mechanisms based on the mesoscopic model of graphene sheets (Model. Simul. Mater. Sci. Eng. 2011, 19, 54003). It is found that the modulus increases almost linearly with an increased proportion of 8-layer sheets, which is well explained by the mixture rule; the strength decreases first and reaches the minimum value at a critical proportion of stiff sheets ~30%, which is well explained by the analysis of structural connectivity and deformation energy of bi-modal GrFs. Furthermore, high-stress regions are mainly dispersed in thick sheets, while large-strain areas mainly locate in thin ones. Both of them have a highly uneven distribution in GrFs due to the intrinsic heterogeneity in both structures and the mechanical properties of sheets. Moreover, the elastic recovery ability of GrFs can be enhanced by adding more thick sheets. These results should be helpful for us to understand and further guide the design of advanced GrF-based materials.


2020 ◽  
Vol 791 ◽  
pp. 139797
Author(s):  
Wenhua Dai ◽  
Sun Wenjun ◽  
Jijun Xin ◽  
Shanlin Wang ◽  
Chao Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document