Investigation on the Tensile and Compressional Behavior of Inconel 625 Fabricated through Laser Powder Bed Fusion

Author(s):  
Sina Salemi ◽  
H. R. Javidrad
2020 ◽  
Vol 769 ◽  
pp. 138500 ◽  
Author(s):  
Giulio Marchese ◽  
Simone Parizia ◽  
Masoud Rashidi ◽  
Abdollah Saboori ◽  
Diego Manfredi ◽  
...  

Author(s):  
Felix Schmeiser ◽  
Erwin Krohmer ◽  
Christian Wagner ◽  
Norbert Schell ◽  
Eckart Uhlmann ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy. Graphical Abstract


2017 ◽  
Vol 48 (11) ◽  
pp. 5547-5558 ◽  
Author(s):  
Eric A. Lass ◽  
Mark R. Stoudt ◽  
Maureen E. Williams ◽  
Michael B. Katz ◽  
Lyle E. Levine ◽  
...  

2020 ◽  
Author(s):  
Omar Fergani ◽  
Katharina Eissing ◽  
Teresa Perez Prado ◽  
Ole Geisen

The industrial use of laser powder-bed fusion (L-PBF) in turbomachinery is gaining momentum renderingthe inspection and quali?cation of certain post-processing steps necessary. This includes fusiontechniques that allow to print multiple parts separately to take advantage of e.g. various print orientationsand join them subsequently. The main motivation of this study is to validate the tungsten inertgas (TIG) welding process of L-PBF manufactured parts using industrial speci?cations relevant for gasturbines to pave the way for the industrial production of modular build setups. For this, two commonlyused nickel-based super alloys for high-temperature applications, Inconel 718 and Inconel 625 are chosen.Since their defect-free printability has been established widely, we focus on the suitability to be joined usingTIG welding. The process is evaluated performing microstructural examination and mechanical testsin as-built as well as heat-treated samples. The welds are assessed by applying a general weld quali?cationapproach used at Siemens Gas and Power. It was found that both materials can be joined via TIGwelding using standard weld parameters causing minimal defects. A solution annealing heat treatmentbefore welding is not necessary for a positive outcome, but still recommended for Inconel 718.


2021 ◽  
Author(s):  
Saurav Kumar Nayak ◽  
Arackal Narayanan Jinoop ◽  
Christ Prakash Paul ◽  
Vesangi Anil Kumar ◽  
Dineshraj Subburaj ◽  
...  

Abstract This paper reports the effect of Hot Isostatic Pressing (HIPing) on the porosity, microstructure and mechanical properties of Laser Powder Bed Fusion (LPBF) IN625 structures built at a higher layer thickness of 100 µm. It is observed that the process-induced pores/voids of volume fraction (Vf) 0.43% in as-built IN625 structures are reduced significantly to ~ 0.01% after HIPing treatment. The microstructure is changed from fine columnar dendrites to coarse equiaxed dendrites. The microstructural analysis of as-built structures reveals the presence of cellular/ dendritic growth along with elemental segregation of Nb, Si and C and precipitation of Nb-rich carbides. Whereas, coarse recrystallized microstructure along with elemental segregation of Si and precipitation of Nb, Mo and Cr rich carbides are observed in Hot Isostatic Pressed (HIPed) samples. HIPed structures exhibit lower tensile s trength, higher ductility, and lower anisotropy as compared to LPBF built structures. There is a reduction in the Vickers micro-hardness of IN625 samples after HIPing and the values are observed to be similar to their conventional counterparts. Further, an increase in the energy storage capacity of the material is observed after HIPing treatment through Automated Ball Indentation (ABI®) studies. The study paves a way to develop ~100% dense, defect-free and isotropic engineering components using LPBF.


Sign in / Sign up

Export Citation Format

Share Document